seeker - Simplified Fetching and Processing of Microarray and RNA-Seq Data

Wrapper around various existing tools and command-line interfaces, providing a standard interface, simple parallelization, and detailed logging. For microarray data, maps probe sets to standard gene IDs, building on 'GEOquery' Davis and Meltzer (2007) <doi:10.1093/bioinformatics/btm254>, 'ArrayExpress' Kauffmann et al. (2009) <doi:10.1093/bioinformatics/btp354>, Robust multi-array average 'RMA' Irizarry et al. (2003) <doi:10.1093/biostatistics/4.2.249>, and 'BrainArray' Dai et al. (2005) <doi:10.1093/nar/gni179>. For RNA-seq data, fetches metadata and raw reads from National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), performs standard adapter and quality trimming using 'TrimGalore' Krueger <https://github.com/FelixKrueger/TrimGalore>, performs quality control checks using 'FastQC' Andrews <https://github.com/s-andrews/FastQC>, quantifies transcript abundances using 'salmon' Patro et al. (2017) <doi:10.1038/nmeth.4197> and potentially 'refgenie' Stolarczyk et al. (2020) <doi:10.1093/gigascience/giz149>, aggregates the results using 'MultiQC' Ewels et al. (2016) <doi:10.1093/bioinformatics/btw354>, maps transcripts to genes using 'biomaRt' Durinkck et al. (2009) <doi:10.1038/nprot.2009.97>, and summarizes transcript-level quantifications for gene-level analyses using 'tximport' Soneson et al. (2015) <doi:10.12688/f1000research.7563.2>.

Last updated 6 days ago

archivedpackagesr-universe

3.00 score 5 stars 1 scripts 357 downloads

FLSSS - Mining Rigs for Problems in the Subset Sum Family

Specialized solvers for combinatorial optimization problems in the Subset Sum family. The solvers differ from the mainstream in the options of (i) restricting subset size, (ii) bounding subset elements, (iii) mining real-value multisets with predefined subset sum errors, (iv) finding one or more subsets in limited time. A novel algorithm for mining the one-dimensional Subset Sum induced algorithms for the multi-Subset Sum and the multidimensional Subset Sum. The multi-threaded framework for the latter offers exact algorithms to the multidimensional Knapsack and the Generalized Assignment problems. Historical updates include (a) renewed implementation of the multi-Subset Sum, multidimensional Knapsack and Generalized Assignment solvers; (b) availability of bounding solution space in the multidimensional Subset Sum; (c) fundamental data structure and architectural changes for enhanced cache locality and better chance of SIMD vectorization; (d) option of mapping floating-point instance to compressed 64-bit integer instance with user-controlled precision loss, which could yield substantial speedup due to the dimension reduction and efficient compressed integer arithmetic via bit-manipulations; (e) distributed computing infrastructure for multidimensional subset sum; (f) arbitrary-precision zero-margin-of-error multidimensional Subset Sum accelerated by a simplified Bloom filter. The package contains a copy of xxHash from <https://github.com/Cyan4973/xxHash>. Package vignette (<doi:10.48550/arXiv.1612.04484>) detailed a few historical updates. Functions prefixed with 'aux' (auxiliary) are independent implementations of published algorithms for solving optimization problems less relevant to Subset Sum.

Last updated 5 days ago

archivedpackagesr-universegmpcpp

2.00 score 5 stars 20 scripts 512 downloads

lrmest - Different Types of Estimators to Deal with Multicollinearity

When multicollinearity exists among predictor variables of the linear model, least square estimators does not provide a better solution for estimating parameters. To deal with multicollinearity several estimators are proposed in the literature. Some of these estimators are Ordinary Least Square Estimator (OLSE), Ordinary Generalized Ordinary Least Square Estimator (OGOLSE), Ordinary Ridge Regression Estimator (ORRE), Ordinary Generalized Ridge Regression Estimator (OGRRE), Restricted Least Square Estimator (RLSE), Ordinary Generalized Restricted Least Square Estimator (OGRLSE), Ordinary Mixed Regression Estimator (OMRE), Ordinary Generalized Mixed Regression Estimator (OGMRE), Liu Estimator (LE), Ordinary Generalized Liu Estimator (OGLE), Restricted Liu Estimator (RLE), Ordinary Generalized Restricted Liu Estimator (OGRLE), Stochastic Restricted Liu Estimator (SRLE), Ordinary Generalized Stochastic Restricted Liu Estimator (OGSRLE), Type (1),(2),(3) Liu Estimator (Type-1,2,3 LTE), Ordinary Generalized Type (1),(2),(3) Liu Estimator (Type-1,2,3 OGLTE), Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 ALTE), Ordinary Generalized Type (1),(2),(3) Adjusted Liu Estimator (Type-1,2,3 OGALTE), Almost Unbiased Ridge Estimator (AURE), Ordinary Generalized Almost Unbiased Ridge Estimator (OGAURE), Almost Unbiased Liu Estimator (AULE), Ordinary Generalized Almost Unbiased Liu Estimator (OGAULE), Stochastic Restricted Ridge Estimator (SRRE), Ordinary Generalized Stochastic Restricted Ridge Estimator (OGSRRE), Restricted Ridge Regression Estimator (RRRE) and Ordinary Generalized Restricted Ridge Regression Estimator (OGRRRE). To select the best estimator in a practical situation the Mean Square Error (MSE) is used. Using this package scalar MSE value of all the above estimators and Prediction Sum of Square (PRESS) values of some of the estimators can be obtained, and the variation of the MSE and PRESS values for the relevant estimators can be shown graphically.

Last updated 22 days ago

archivedpackagesr-universe

1.70 score 5 stars 211 downloads

NLRoot - searching for the root of equation

This is a package which can help you search for the root of a equation.

Last updated 22 days ago

archivedpackagesr-universe

1.70 score 5 stars 178 downloads

hasseDiagram - Drawing Hasse Diagram

Drawing Hasse diagram - visualization of transitive reduction of a finite partially ordered set.

Last updated 1 months ago

archivedpackagesr-universe

1.70 score 5 stars 3 scripts 137 downloads