twitteR - R Based Twitter Client

Provides an interface to the Twitter web API.

Last updated 25 days ago

archivedpackagesr-universe

6.24 score 5 stars 1 dependents 2.0k scripts 1.3k downloads

DDoutlier - Distance & Density-Based Outlier Detection

Outlier detection in multidimensional domains. Implementation of notable distance and density-based outlier algorithms. Allows users to identify local outliers by comparing observations to their nearest neighbors, reverse nearest neighbors, shared neighbors or natural neighbors. For distance-based approaches, see Knorr, M., & Ng, R. T. (1997) <doi:10.1145/782010.782021>, Angiulli, F., & Pizzuti, C. (2002) <doi:10.1007/3-540-45681-3_2>, Hautamaki, V., & Ismo, K. (2004) <doi:10.1109/ICPR.2004.1334558> and Zhang, K., Hutter, M. & Jin, H. (2009) <doi:10.1007/978-3-642-01307-2_84>. For density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002) <doi:10.1007/3-540-47887-6_53>, Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006) <doi:10.1007/11731139_68>, Schubert, E., Zimek, A. & Kriegel, H-P. (2014) <doi:10.1137/1.9781611973440.63>, Latecki, L., Lazarevic, A. & Prokrajac, D. (2007) <doi:10.1007/978-3-540-73499-4_6>, Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003) <doi:10.1109/ICDE.2003.1260802>, Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000) <doi:10.1145/342009.335388>, Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009) <doi:10.1145/1645953.1646195>, Zhu, Q., Feng, Ji. & Huang, J. (2016) <doi:10.1016/j.patrec.2016.05.007>, Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015) <doi:10.1016/j.knosys.2015.10.014>, Tang, B. & Haibo, He. (2017) <doi:10.1016/j.neucom.2017.02.039> and Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011) <doi:10.1007/978-3-642-20847-8_23>.

Last updated 25 days ago

archivedpackagesr-universe

3.62 score 5 stars 1 dependents 56 scripts 446 downloads

TukeyC - Conventional Tukey Test

Perform the conventional Tukey test from formula, lm, aov, aovlist and lmer objects.

Last updated 6 days ago

archivedpackagesr-universe

3.24 score 5 stars 599 downloads

seeker - Simplified Fetching and Processing of Microarray and RNA-Seq Data

Wrapper around various existing tools and command-line interfaces, providing a standard interface, simple parallelization, and detailed logging. For microarray data, maps probe sets to standard gene IDs, building on 'GEOquery' Davis and Meltzer (2007) <doi:10.1093/bioinformatics/btm254>, 'ArrayExpress' Kauffmann et al. (2009) <doi:10.1093/bioinformatics/btp354>, Robust multi-array average 'RMA' Irizarry et al. (2003) <doi:10.1093/biostatistics/4.2.249>, and 'BrainArray' Dai et al. (2005) <doi:10.1093/nar/gni179>. For RNA-seq data, fetches metadata and raw reads from National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), performs standard adapter and quality trimming using 'TrimGalore' Krueger <https://github.com/FelixKrueger/TrimGalore>, performs quality control checks using 'FastQC' Andrews <https://github.com/s-andrews/FastQC>, quantifies transcript abundances using 'salmon' Patro et al. (2017) <doi:10.1038/nmeth.4197> and potentially 'refgenie' Stolarczyk et al. (2020) <doi:10.1093/gigascience/giz149>, aggregates the results using 'MultiQC' Ewels et al. (2016) <doi:10.1093/bioinformatics/btw354>, maps transcripts to genes using 'biomaRt' Durinkck et al. (2009) <doi:10.1038/nprot.2009.97>, and summarizes transcript-level quantifications for gene-level analyses using 'tximport' Soneson et al. (2015) <doi:10.12688/f1000research.7563.2>.

Last updated 30 days ago

archivedpackagesr-universe

3.00 score 5 stars 1 scripts 253 downloads

washex - Washington State Legislative Explorer

Gets data from the Washington State Legislature.

Last updated 18 days ago

archivedpackagesr-universe

2.40 score 5 stars 2 scripts 192 downloads

FLSSS - Mining Rigs for Problems in the Subset Sum Family

Specialized solvers for combinatorial optimization problems in the Subset Sum family. The solvers differ from the mainstream in the options of (i) restricting subset size, (ii) bounding subset elements, (iii) mining real-value multisets with predefined subset sum errors, (iv) finding one or more subsets in limited time. A novel algorithm for mining the one-dimensional Subset Sum induced algorithms for the multi-Subset Sum and the multidimensional Subset Sum. The multi-threaded framework for the latter offers exact algorithms to the multidimensional Knapsack and the Generalized Assignment problems. Historical updates include (a) renewed implementation of the multi-Subset Sum, multidimensional Knapsack and Generalized Assignment solvers; (b) availability of bounding solution space in the multidimensional Subset Sum; (c) fundamental data structure and architectural changes for enhanced cache locality and better chance of SIMD vectorization; (d) option of mapping floating-point instance to compressed 64-bit integer instance with user-controlled precision loss, which could yield substantial speedup due to the dimension reduction and efficient compressed integer arithmetic via bit-manipulations; (e) distributed computing infrastructure for multidimensional subset sum; (f) arbitrary-precision zero-margin-of-error multidimensional Subset Sum accelerated by a simplified Bloom filter. The package contains a copy of xxHash from <https://github.com/Cyan4973/xxHash>. Package vignette (<doi:10.48550/arXiv.1612.04484>) detailed a few historical updates. Functions prefixed with 'aux' (auxiliary) are independent implementations of published algorithms for solving optimization problems less relevant to Subset Sum.

Last updated 30 days ago

archivedpackagesr-universegmpcpp

2.00 score 5 stars 20 scripts 512 downloads