Package: miWQS 0.4.4

Paul M. Hargarten

miWQS: Multiple Imputation Using Weighted Quantile Sum Regression

The miWQS package handles the uncertainty due to below the detection limit in a correlated component mixture problem. Researchers want to determine if a set/mixture of continuous and correlated components/chemicals is associated with an outcome and if so, which components are important in that mixture. These components share a common outcome but are interval-censored between zero and low thresholds, or detection limits, that may be different across the components. This package applies the multiple imputation (MI) procedure to the weighted quantile sum regression (WQS) methodology for continuous, binary, or count outcomes (Hargarten & Wheeler (2020) <doi:10.1016/j.envres.2020.109466>). The imputation models are: bootstrapping imputation (Lubin et.al (2004) <doi:10.1289/ehp.7199>), univariate Bayesian imputation (Hargarten & Wheeler (2020) <doi:10.1016/j.envres.2020.109466>), and multivariate Bayesian regression imputation.

Authors:Paul M. Hargarten [aut, cre], David C. Wheeler [aut, rev, ths]

miWQS_0.4.4.tar.gz
miWQS_0.4.4.zip(r-4.5)miWQS_0.4.4.zip(r-4.4)miWQS_0.4.4.zip(r-4.3)
miWQS_0.4.4.tgz(r-4.5-any)miWQS_0.4.4.tgz(r-4.4-any)miWQS_0.4.4.tgz(r-4.3-any)
miWQS_0.4.4.tar.gz(r-4.5-noble)miWQS_0.4.4.tar.gz(r-4.4-noble)
miWQS_0.4.4.tgz(r-4.4-emscripten)miWQS_0.4.4.tgz(r-4.3-emscripten)
miWQS.pdf |miWQS.html
miWQS/json (API)
NEWS

# Install 'miWQS' in R:
install.packages('miWQS', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/phargarten2/miwqs/issues

Datasets:

On CRAN:

Conda:

archivedpackagesr-universe

2.70 score 5 stars 245 downloads 12 exports 92 dependencies

Last updated 11 days agofrom:97f22807d4 (on package/miWQS). Checks:1 OK, 3 ERROR, 5 WARNING. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 21 2025
R-4.5-winERRORMar 21 2025
R-4.5-macERRORMar 21 2025
R-4.5-linuxERRORMar 21 2025
R-4.4-winWARNINGMar 21 2025
R-4.4-macWARNINGMar 21 2025
R-4.4-linuxWARNINGMar 21 2025
R-4.3-winWARNINGMar 21 2025
R-4.3-macWARNINGMar 21 2025

Exports:analyze.individuallycombine.AICdo.many.wqsestimate.wqsestimate.wqs.formulaimpute.bootimpute.Lubinimpute.multivariate.bayesianimpute.subimpute.univariate.bayesian.mimake.quantile.matrixpool.mi

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercodacolorspacecondMVNormcpp11data.tabledigestdplyrevaluatefansifarverfastmapfontawesomeforeignFormulafsgenericsggplot2glm2gluegmmgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsinvgammaisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmatrixNormalmcmcMCMCpackmemoisemgcvmimemunsellmvtnormnlmennetpillarpkgconfigpurrrquantregR6rappdirsRColorBrewerrlangrlistrmarkdownrpartRsolnprstudioapisandwichsassscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttinytextmvmixnormtmvtnormtruncnormutf8vctrsviridisviridisLitewithrxfunXMLyamlzoo

README: miWQS

Rendered fromREADME.Rmdusingknitr::rmarkdownon Mar 21 2025.

Last update: 2025-03-21
Started: 2025-03-21