Package: InDisc 1.1.0

David Navarro-Gonzalez

InDisc: Obtaining and Estimating Unidimensional and Multidimensional IRT Dual Models

Performs a unified approach for obtaining and estimating unidimensional and multidimensional Item Response Theory (IRT) Dual Models (DMs), proposed by Ferrando (2019 <doi:10.1177/0146621618817779>).

Authors:David Navarro-Gonzalez [cre, aut], Pere Joan Ferrando [aut]

InDisc_1.1.0.tar.gz
InDisc_1.1.0.zip(r-4.5)InDisc_1.1.0.zip(r-4.4)InDisc_1.1.0.zip(r-4.3)
InDisc_1.1.0.tgz(r-4.5-any)InDisc_1.1.0.tgz(r-4.4-any)InDisc_1.1.0.tgz(r-4.3-any)
InDisc_1.1.0.tar.gz(r-4.5-noble)InDisc_1.1.0.tar.gz(r-4.4-noble)
InDisc_1.1.0.tgz(r-4.4-emscripten)InDisc_1.1.0.tgz(r-4.3-emscripten)
InDisc.pdf |InDisc.html
InDisc/json (API)

# Install 'InDisc' in R:
install.packages('InDisc', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/cranhaven/cranhaven.r-universe.dev/issues

Datasets:

On CRAN:

Conda:

archivedpackagesr-universe

1.70 score 5 stars 181 downloads 45 exports 6 dependencies

Last updated 16 hours agofrom:3a24940da5 (on package/InDisc). Checks:6 OK, 3 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKApr 01 2025
R-4.5-winNOTEApr 01 2025
R-4.5-macNOTEApr 01 2025
R-4.5-linuxNOTEApr 01 2025
R-4.4-winOKApr 01 2025
R-4.4-macOKApr 01 2025
R-4.4-linuxOKApr 01 2025
R-4.3-winOKApr 01 2025
R-4.3-macOKApr 01 2025

Exports:betagradmchiscreanchicreanodoseap17ceap17geap17gtheapmulc2eapmulc3eapmulc4eapmulg2eapmulg3eapmulg4eapmulthc2eapmulthc3eapmulthc4eapth17cgenerbetaInDisclrtestlrtestmlrtsegpcongpcongmulpriorgralpriormulreap17creap17greapmulcreapmulgreapmulthcreapth17creapth17grlrtesgrlrtestrlrtestmrthressizethres3thres4thres5thresdicthresholdstransposeverosi2

Dependencies:GPArotationlatticematrixStatsmnormtnlmepsych