Package: finbipartite 0.1.0

Ze Vinicius

finbipartite: Learning Bipartite Graphs: Heavy Tails and Multiple Components

Learning bipartite and k-component bipartite graphs from financial datasets. This package contains implementations of the algorithms described in the paper: Cardoso JVM, Ying J, and Palomar DP (2022). <https://openreview.net/pdf?id=WNSyF9qZaMd> "Learning bipartite graphs: heavy tails and multiple components, Advances in Neural Informations Processing Systems" (NeurIPS).

Authors:Ze Vinicius [cre, aut]

finbipartite_0.1.0.tar.gz
finbipartite_0.1.0.zip(r-4.5)finbipartite_0.1.0.zip(r-4.4)finbipartite_0.1.0.zip(r-4.3)
finbipartite_0.1.0.tgz(r-4.5-any)finbipartite_0.1.0.tgz(r-4.4-any)finbipartite_0.1.0.tgz(r-4.3-any)
finbipartite_0.1.0.tar.gz(r-4.5-noble)finbipartite_0.1.0.tar.gz(r-4.4-noble)
finbipartite_0.1.0.tgz(r-4.4-emscripten)finbipartite_0.1.0.tgz(r-4.3-emscripten)
finbipartite.pdf |finbipartite.html
finbipartite/json (API)

# Install 'finbipartite' in R:
install.packages('finbipartite', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/convexfi/bipartite/issues

On CRAN:

Conda:

archivedpackagesr-universe

2.40 score 5 stars 206 downloads 4 exports 33 dependencies

Last updated 14 days agofrom:111d958be7 (on package/finbipartite). Checks:1 OK, 7 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKFeb 28 2025
R-4.5-winNOTEMar 01 2025
R-4.5-macNOTEMar 01 2025
R-4.5-linuxNOTEFeb 28 2025
R-4.4-winNOTEMar 01 2025
R-4.4-macNOTEMar 01 2025
R-4.3-winNOTEMar 01 2025
R-4.3-macNOTEMar 01 2025

Exports:learn_bipartite_graph_nielearn_connected_bipartite_graph_pgdlearn_heavy_tail_bipartite_graph_pgdlearn_heavy_tail_kcomp_bipartite_graph

Dependencies:bitbit64clicrayonCVXRdata.tableECOSolveRgluegmphmsjsonlitelatticelifecycleMASSMatrixmvtnormosqppkgconfigprettyunitsprogressquadprogR6RcppRcppArmadilloRcppEigenrlangrlistRmpfrscsspectralGraphTopologyvctrsXMLyaml