Package: ScRNAIMM 0.1

Mohamed Soudy

ScRNAIMM: Performing Single-Cell RNA-Seq Imputation by Using Mean/Median Imputation

Performing single-cell imputation in a way that preserves the biological variations in the data. The package clusters the input data to do imputation for each cluster, and do a distribution check using the Anderson-Darling normality test to impute dropouts using mean or median (Yazici, B., & Yolacan, S. (2007) <doi:10.1080/10629360600678310>).

Authors:Mohamed Soudy [aut, cre], Sascha Jung [aut], Antonio DEL SOL [aut]

ScRNAIMM_0.1.tar.gz
ScRNAIMM_0.1.zip(r-4.5)ScRNAIMM_0.1.zip(r-4.4)ScRNAIMM_0.1.zip(r-4.3)
ScRNAIMM_0.1.tgz(r-4.5-any)ScRNAIMM_0.1.tgz(r-4.4-any)ScRNAIMM_0.1.tgz(r-4.3-any)
ScRNAIMM_0.1.tar.gz(r-4.5-noble)ScRNAIMM_0.1.tar.gz(r-4.4-noble)
ScRNAIMM_0.1.tgz(r-4.4-emscripten)ScRNAIMM_0.1.tgz(r-4.3-emscripten)
ScRNAIMM.pdf |ScRNAIMM.html
ScRNAIMM/json (API)

# Install 'ScRNAIMM' in R:
install.packages('ScRNAIMM', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/cranhaven/cranhaven.r-universe.dev/issues

On CRAN:

Conda:

archivedpackagesr-universe

1.70 score 5 stars 161 downloads 7 exports 60 dependencies

Last updated 6 days agofrom:34d637c7c1 (on package/ScRNAIMM). Checks:9 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 14 2025
R-4.5-winOKMar 16 2025
R-4.5-macOKMar 16 2025
R-4.5-linuxOKMar 14 2025
R-4.4-winOKMar 16 2025
R-4.4-macOKMar 16 2025
R-4.4-linuxOKMar 14 2025
R-4.3-winOKMar 16 2025
R-4.3-macOKMar 16 2025

Exports:cluster_cellsevaluate_clusteringfilter_ScRNAprepare_datasetrun_pipelineScRNA_imp_MMscRNA_MMI

Dependencies:BHbitbit64callrcliclustercodetoolscolorspacecorocpp11descdoParalleldplyrdqrngfansifarverFNNforeachgenericsglueigraphirlbaiteratorsjsonlitelabelinglatticelifecyclemagrittrMatrixmatrixStatsmclustmunsellnortestpillarpkgconfigprocessxpsR6RColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppParallelRcppProgressRhpcBLASctlrlangRSpectrasafetensorsscalesscDHAsitmotibbletidyselecttorchutf8uwotvctrsviridisLitewithr