cranhaven
. See also theR-universe documentation.Package: SparseTSCGM 4.0

Fentaw Abegaz
SparseTSCGM: Sparse Time Series Chain Graphical Models
Computes sparse vector autoregressive coefficients and precision matrices for time series chain graphical models. Fentaw Abegaz and Ernst Wit (2013) <doi:10.1093/biostatistics/kxt005>.
Authors:
SparseTSCGM_4.0.tar.gz
SparseTSCGM_4.0.zip(r-4.5)SparseTSCGM_4.0.zip(r-4.4)SparseTSCGM_4.0.zip(r-4.3)
SparseTSCGM_4.0.tgz(r-4.5-x86_64)SparseTSCGM_4.0.tgz(r-4.5-arm64)SparseTSCGM_4.0.tgz(r-4.4-x86_64)SparseTSCGM_4.0.tgz(r-4.4-arm64)SparseTSCGM_4.0.tgz(r-4.3-x86_64)SparseTSCGM_4.0.tgz(r-4.3-arm64)
SparseTSCGM_4.0.tar.gz(r-4.5-noble)SparseTSCGM_4.0.tar.gz(r-4.4-noble)
SparseTSCGM_4.0.tgz(r-4.4-emscripten)SparseTSCGM_4.0.tgz(r-4.3-emscripten)
SparseTSCGM.pdf |SparseTSCGM.html✨
SparseTSCGM/json (API)
# Install 'SparseTSCGM' in R: |
install.packages('SparseTSCGM', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cranhaven/cranhaven.r-universe.dev/issues
- mammary - Microarray gene expression time course data for mammary gland development in mice
Last updated 2 days agofrom:e88e9bac65 (on package/SparseTSCGM). Checks:8 OK, 4 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Apr 01 2025 |
R-4.5-win-x86_64 | NOTE | Apr 01 2025 |
R-4.5-mac-x86_64 | NOTE | Apr 01 2025 |
R-4.5-mac-aarch64 | NOTE | Apr 01 2025 |
R-4.5-linux-x86_64 | NOTE | Apr 01 2025 |
R-4.4-win-x86_64 | OK | Apr 01 2025 |
R-4.4-mac-x86_64 | OK | Apr 01 2025 |
R-4.4-mac-aarch64 | OK | Apr 01 2025 |
R-4.4-linux-x86_64 | OK | Apr 01 2025 |
R-4.3-win-x86_64 | OK | Apr 01 2025 |
R-4.3-mac-x86_64 | OK | Apr 01 2025 |
R-4.3-mac-aarch64 | OK | Apr 01 2025 |
Exports:plot.tscgmplot.tscgm.ar2print.tscgmsim.datasparse.tscgmsummary.tscgm
Dependencies:abindclicodacorpcorcpp11fansiglassogluehugeigraphlatticelifecyclelongitudinalmagrittrMASSMatrixmvtnormnetworkpillarpkgconfigRcppRcppEigenrlangstatnet.commontibbleutf8vctrs