Package: LTRCforests 0.7.0
LTRCforests: Ensemble Methods for Survival Data with Time-Varying Covariates
Implements the conditional inference forest and relative risk forest algorithm to modeling left-truncated right-censored data with time-invariant covariates, and (left-truncated) right-censored survival data with time-varying covariates. It also provides functions to tune the parameters and evaluate the model fit. See Yao et al. (2022) <doi:10.1177/09622802221111549>.
Authors:
LTRCforests_0.7.0.tar.gz
LTRCforests_0.7.0.zip(r-4.5)LTRCforests_0.7.0.zip(r-4.4)LTRCforests_0.7.0.zip(r-4.3)
LTRCforests_0.7.0.tgz(r-4.4-x86_64)LTRCforests_0.7.0.tgz(r-4.4-arm64)LTRCforests_0.7.0.tgz(r-4.3-x86_64)LTRCforests_0.7.0.tgz(r-4.3-arm64)
LTRCforests_0.7.0.tar.gz(r-4.5-noble)LTRCforests_0.7.0.tar.gz(r-4.4-noble)
LTRCforests_0.7.0.tgz(r-4.4-emscripten)LTRCforests_0.7.0.tgz(r-4.3-emscripten)
LTRCforests.pdf |LTRCforests.html✨
LTRCforests/json (API)
# Install 'LTRCforests' in R: |
install.packages('LTRCforests', repos = c('https://cranhaven.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cranhaven/cranhaven.r-universe.dev/issues
- pbcsample - Sample Mayo Clinic Primary Biliary Cirrhosis Data
Last updated 11 days agofrom:6a7b7b2d2a (on package/LTRCforests). Checks:7 OK, 2 ERROR. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 10 2025 |
R-4.5-win-x86_64 | ERROR | Jan 10 2025 |
R-4.5-linux-x86_64 | ERROR | Jan 10 2025 |
R-4.4-win-x86_64 | OK | Jan 10 2025 |
R-4.4-mac-x86_64 | OK | Jan 10 2025 |
R-4.4-mac-aarch64 | OK | Jan 10 2025 |
R-4.3-win-x86_64 | OK | Jan 10 2025 |
R-4.3-mac-x86_64 | OK | Jan 10 2025 |
R-4.3-mac-aarch64 | OK | Jan 10 2025 |
Exports:ltrccifltrcrrfpredictProbprintsbrier_ltrctune.ltrcciftune.ltrcrrf
Dependencies:classclicodetoolsdata.tablediagramdigestFormulafuturefuture.applyglobalsinumipredKernSmoothlatticelavalibcoinlistenvMASSMatrixmvtnormnnetnumDerivparallellypartykitprodlimprogressrRcpprpartshapeSQUAREMsurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Constructs forest methods for left-truncated and right-censored (LTRC) survival data | LTRCforests-package |
Fit a LTRC conditional inference forest | ltrccif |
Fit a LTRC relative risk forest | ltrcrrf |
Sample Mayo Clinic Primary Biliary Cirrhosis Data | pbcsample |
Compute a Survival Curve from a LTRCCIF model or a LTRCRRF model | predictProb predictProb.ltrccif, predictProb.ltrcrrf |
Print Summary Output of a ltrccif object or a ltrcrrf object | print print.ltrccif, print.ltrcrrf |
Model fit evaluation for LTRC forests. | sbrier_ltrc |
Tune 'mtry' to the optimal value with respect to out-of-bag error for a LTRCCIF model | tune.ltrccif |
Tune 'mtry' to the optimal value with respect to out-of-bag error for a LTRCRRF model | tune.ltrcrrf |