Package: spNetwork (via r-universe)

October 23, 2024

Type Package

Title Spatial Analysis on Network

Version 0.4.4.3

Description Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw' objects from 'spdep' package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) [<doi:10.1080/13658810802475491>](https://doi.org/10.1080/13658810802475491); Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

License GPL-2

Encoding UTF-8

LazyData true

Imports spdep ($>= 1.1.2$), igraph ($>= 1.2.6$), cubature ($>= 2.0.4.1$), future.apply ($>= 1.4.0$), methods ($>= 1.7.1$), ggplot2 ($>=$ 3.3.0), progressr ($>= 0.4.0$), data.table ($>= 1.12.8$), Rcpp ($>=$ 1.0.4.6), Rdpack ($>= 2.1.1$), dbscan ($>= 1.1-8$), sf ($>= 1.0-3$), abind ($>= 1.4-5$), sfheaders ($>= 0.4.4$)

Depends R ($> = 3.6$)

Suggests future ($>= 1.16.0$), test that ($>= 3.0.0$), kable Extra ($>= 1.16.0$) 1.1.0), RColorBrewer (>= 1.1-2), classInt (>= 0.4-3), reshape2 $(>= 1.4.3)$, rlang $(>= 0.4.6)$, rgl $(>= 0.107.14)$, tmap $(>= 1.4.3)$ 3.3-1), smoothr ($>= 0.2.2$), concaveman ($>= 1.1.0$), covr ($>=$ 3.5.1), knitr, rmarkdown

RoxygenNote 7.3.1

VignetteBuilder knitr

URL <https://jeremygelb.github.io/spNetwork/>

BugReports <https://github.com/JeremyGelb/spNetwork/issues>

LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH

2 Contents

RdMacros Rdpack

Language en-CA

SystemRequirements C++17

NeedsCompilation yes

Author Jeremy Gelb [aut, cre] (<<https://orcid.org/0000-0002-7114-2714>>), Philippe Apparicio [ctb] (<<https://orcid.org/0000-0001-6466-9342>>)

Maintainer Jeremy Gelb <jeremy.gelb@ucs.inrs.ca>

Date/Publication 2024-06-21 21:40:02 UTC

Additional_repositories <https://cranhaven.r-universe.dev>

Repository https://cranhaven.r-universe.dev

RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev

RemoteRef package/spNetwork

RemoteSha 535f916d2903831e64f176e7e2eb56304a7b7f3b

Contents

Index

spNetwork-package *spNetwork: Spatial Analysis on Network*

Description

Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw' objects from 'spdep' package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) [doi:10.1080/13658810802475491;](https://doi.org/10.1080/13658810802475491) Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw' objects from 'spdep' package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) [doi:10.1080/13658810802475491;](https://doi.org/10.1080/13658810802475491) Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

Author(s)

Maintainer: Jeremy Gelb <jeremy.gelb@ucs.inrs.ca> [\(ORCID\)](https://orcid.org/0000-0002-7114-2714)

Other contributors:

• Philippe Apparicio <philippe.apparicio@ucs.inrs.ca> [\(ORCID\)](https://orcid.org/0000-0001-6466-9342) [contributor]

See Also

Useful links:

- <https://jeremygelb.github.io/spNetwork/>
- Report bugs at <https://github.com/JeremyGelb/spNetwork/issues>

Useful links:

- <https://jeremygelb.github.io/spNetwork/>
- Report bugs at <https://github.com/JeremyGelb/spNetwork/issues>

adaptive_bw_tnkde_cpp *The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (INTERNAL)*

Description

The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (IN-TERNAL)

Usage

```
adaptive_bw_tnkde_cpp(
  method,
  neighbour_list,
  sel_events,
  sel_events_wid,
  sel_events_time,
  events,
  events_wid,
  events_time,
 weights,
 bws_net,
 bws_time,
  kernel_name,
  line_list,
 max_depth,
 min_tol
```
)

Value

a vector witht the estimated density at each event location

Examples

no example provided, this is an internal function

adaptive_bw_tnkde_cpp2

The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (INTERNAL)

Description

The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (IN-TERNAL)

Usage

```
adaptive_bw_tnkde_cpp2(
  method,
  neighbour_list,
  sel_events,
  sel_events_wid,
  sel_events_time,
  events,
  events_wid,
  events_time,
  weights,
  bws_net,
  bws_time,
  kernel_name,
  line_list,
 max_depth,
  min_tol
)
```
aggregate_points 7

Arguments

Value

a vector with the estimated density at each event location

Examples

no example provided, this is an internal function

aggregate_points *Events aggregation*

Description

Function to aggregate points within a radius.

Usage

```
aggregate_points(points, maxdist, weight = "weight", return_ids = FALSE)
```
Arguments

Details

This function can be used to aggregate points within a radius. This is done by using the dbscan algorithm. This process is repeated until no more modification is applied.

Value

A new feature collection of points

Examples

```
data(bike_accidents)
bike_accidents$weight <- 1
agg_points <- aggregate_points(bike_accidents, 5)
```
bike_accidents *Road accidents including a bicyle in Montreal in 2016*

Description

A feature collection (sf object) representing road accidents including a cyclist in Montreal in 2016. The EPSG is 3797, and the data comes from the Montreal OpenData website. It is only a small subset in central districts used to demonstrate the main functions of spNetwork.

Usage

bike_accidents

Format

A sf object with 347 rows and 4 variables

NB_VICTIME the number of victims

AN the year of the accident

Date the date of the accident (yyyy/mm/dd)

geom the geometry (points)

build_graph 9

Source

<https://donnees.montreal.ca/dataset/collisions-routieres>

build_graph *Network generation*

Description

Generate an igraph object from a feature collection of linestrings

Usage

```
build_graph(lines, digits, line_weight, attrs = FALSE)
```
Arguments

Details

This function can be used to generate an undirected graph object (igraph object). It uses the coordinates of the linestrings extremities to create the nodes of the graph. This is why the number of digits in the coordinates is important. Too high precision (high number of digits) might break some connections.

Value

A list containing the following elements:

- graph: an igraph object;
- linelist: the dataframe used to build the graph;
- lines: the original feature collection of linestrings;
- spvertices: a feature collection of points representing the vertices of the graph;
- digits : the number of digits kept for the coordinates.

Examples

```
data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
graph_result <- build_graph(mtl_network, 2, "length", attrs = TRUE)
```
Description

Generate a directed igraph object from a feature collection of linestrings

Usage

```
build_graph_directed(lines, digits, line_weight, direction, attrs = FALSE)
```
Arguments

Details

This function can be used to generate a directed graph object (igraph object). It uses the coordinates of the linestrings extremities to create the nodes of the graph. This is why the number of digits in the coordinates is important. Too high precision (high number of digits) might break some connections. The column used to indicate directions can only have the following values: "FT" (From-To), "TF" (To-From) and "Both".

Value

A list containing the following elements:

- graph: an igraph object;
- linelist: the dataframe used to build the graph;
- lines: the original feature collection of lines;
- spvertices: a feature collection of points representing the vertices of the graph;
- digits : the number of digits kept for the coordinates.

build_quadtree 11

Examples

```
data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
mtl_network$direction <- "Both"
mtl_network[6, "direction"] <- "TF"
mtl_network_directed <- lines_direction(mtl_network, "direction")
graph_result <- build_graph_directed(lines = mtl_network_directed,
       digits = 2,
       line_weight = "length",
       direction = "direction",
        attrs = TRUE)
```
build_quadtree *Build a quadtree*

Description

Generate a quadtree object from package SearchTrees, useful to speed up spatial requesting (IN-TERNAL).

Usage

```
build_quadtree(data)
```
Arguments

data a feature collection of linestrings or a feature collection of points

Value

a spatial_index object (pointer to a c++ instance)

Examples

```
data(mtl_network)
tree <- build_quadtree(mtl_network)
buff <- sf::st_buffer(mtl_network[55,], 50)
selection <- spatial_request(buff, tree, mtl_network)
```


Description

Calculate for multiple bandwidth the Cronie and Van Lieshout's Criterion to select an appropriate bandwidth in a data-driven approach.

Usage

```
bw_cvl_calc(
 bws = NULL,lines,
  events,
 w,
  kernel_name,
 method,
  diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_bws = NULL,
  mat_bws = NULL,max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,
  sparse = TRUE,
  zero_strat = "min_double",
  grid\_shape = c(1, 1),sub\_sample = 1,
  verbose = TRUE,
  check = TRUE)
```


The Cronie and Van Lieshout's Criterion (Cronie and Van Lieshout 2018) find the optimal bandwidth by minimizing the difference between the size of the observation window and the sum of the reciprocal of the estimated kernel density at the events locations. In the network case, the size of the study area is the sum of the length of each line in the network. Thus, it is important to only use the necessary parts of the network.

Value

A dataframe with two columns, one for the bandwidths and the second for the Cronie and Van Lieshout's Criterion.

References

Cronie O, Van Lieshout MNM (2018). "A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions." *Biometrika*, 105(2), 455–462.

Examples

```
data(mtl_network)
data(bike_accidents)
cv_scores <- bw_cvl_calc(seq(200,400,50),
                               mtl_network, bike_accidents,
                                rep(1,nrow(bike_accidents)),
                                "quartic", "discontinuous",
                                diggle_correction = FALSE, study_area = NULL,
                                max\_depth = 8,
                               digits=2, tol=0.1, agg=5,
                                sparse=TRUE, grid_shape=c(1,1),
                                sub_sample = 1, verbose=TRUE, check=TRUE)
```
bw_cvl_calc.mc *Bandwidth selection by Cronie and Van Lieshout's Criterion (multicore version)*

Description

Calculate for multiple bandwidths the Cronie and Van Lieshout's Criterion to select an appropriate bandwidth in a data-driven approach. A plan from the package future can be used to split the work across several cores. The different cells generated in accordance with the argument grid_shape are used for the parallelization. So if only one cell is generated (grid_shape = $c(1,1)$), the function will use only one core. The progress bar displays the progression for the cells.

bw_cvl_calc.mc 15

Usage

```
bw_cvl_calc.mc(
 bws = NULL,lines,
 events,
  w,
 kernel_name,
 method,
 diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_bws = NULL,
 mat_bws = NULL,max\_depth = 15,
 digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,
 zero_strat = "min_double",
 grid\_shape = c(1, 1),sub\_sample = 1,
 verbose = TRUE,
  check = TRUE
\mathcal{L}
```


For more details, see help(bw_cvl_calc)

Value

A dataframe with two columns, one for the bandwidths and the second for the Cronie and Van Lieshout's Criterion.

Examples

```
data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
cv_scores <- bw_cvl_calc.mc(seq(200,400,50),
                               mtl_network, bike_accidents,
                               rep(1,nrow(bike_accidents)),
                               "quartic", "discontinuous",
                               diggle_correction = FALSE, study_area = NULL,
                               max\_depth = 8,
                               digits=2, tol=0.1, agg=5,
                               sparse=TRUE, grid_shape=c(1,1),
                               sub_sample = 1, verbose=TRUE, check=TRUE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
bw_cv_likelihood_calc *Bandwidth selection by likelihood cross validation*

Description

Calculate for multiple bandwidth the cross validation likelihood to select an appropriate bandwidth in a data-driven approach

Usage

```
bw_cv_likelihood_calc(
  bws = NULL,lines,
  events,
  w,
  kernel_name,
 method,
  diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_bws = NULL,
  mat_bws = NULL,max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,
  sparse = TRUE,
  grid\_shape = c(1, 1),sub\_sample = 1,
  zero_strat = "min_double",
  verbose = TRUE,
```
 $check = TRUE$

 \mathcal{L}

The function calculates the likelihood cross validation score for several bandwidths in order to find the most appropriate one. The general idea is to find the bandwidth that would produce the most similar results if one event was removed from the dataset (leave one out cross validation). We use here the shortcut formula as described by the package spatstat (Baddeley et al. 2021).

 $LCV(h) = \sum_i \log \hat{\lambda}_{-i}(x_i)$

Where the sum is taken for all events x_i and where $\lambda_{-i}(x_i)$ is the leave-one-out kernel estimate at x_i for a bandwidth h. A higher value indicates a better bandwidth.

Value

A dataframe with two columns, one for the bandwidths and the second for the cross validation score (the lower the better).

References

Baddeley A, Turner R, Rubak E (2021). *spatstat: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests*. R package version 2.1-0, <https://CRAN.R-project.org/package=spatstat>.

Examples

```
data(mtl_network)
data(bike_accidents)
cv_scores <- bw_cv_likelihood_calc(seq(200,800,50),
                               mtl_network, bike_accidents,
                               rep(1,nrow(bike_accidents)),
                               "quartic", "simple",
                               diggle_correction = FALSE, study_area = NULL,
                               max\_depth = 8,
                               digits=2, tol=0.1, agg=5,
                               sparse=TRUE, grid_shape=c(1,1),
```
sub_sample = 1, verbose=TRUE, check=TRUE)

bw_cv_likelihood_calc.mc

Bandwidth selection by likelihood cross validation (multicore)

Description

Calculate for multiple bandwidth the cross validation likelihood to select an appropriate bandwidth in a data-driven approach

Usage

```
bw_cv_likelihood_calc.mc(
  bws,
 lines,
  events,
  w,
  kernel_name,
 method,
  diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_bws = NULL,
 mat_bws = NULL,max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,
  grid\_shape = c(1, 1),sub\_sample = 1,
  zero_strat = "min_double",
  verbose = TRUE,
  check = TRUE
\mathcal{L}
```


See the function bw_cv_likelihood_calc for more details. The calculation is split according to the parameter grid_shape. If $grid_shape = c(1,1)$, then parallel processing cannot be used.

Value

A dataframe with two columns, one for the bandwidths and the second for the cross validation score (the lower the better).

Examples

```
data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
cv_scores <- bw_cv_likelihood_calc.mc(seq(200,800,50),
                               mtl_network, bike_accidents,
                               rep(1,nrow(bike_accidents)),
                               "quartic", "simple",
                               diggle_correction = FALSE, study_area = NULL,
                               max\_depth = 8,
                               digits=2, tol=0.1, agg=5,
                               sparse=TRUE, grid_shape=c(1,1),
                               sub_sample = 1, verbose=TRUE, check=TRUE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
bw_cv_likelihood_calc_tkde

Bandwidth selection for Temporal Kernel density estimate by likelihood cross validation

Description

Calculate the likelihood cross validation score for several bandwidths for the Temporal Kernel density

Usage

```
bw_cv_likelihood_calc_tkde(events, w, bws, kernel_name)
```
Arguments

Value

A vector with the cross validation scores (the higher the better).

Examples

```
data(bike_accidents)
bike_accidents$Date <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- min(bike_accidents$Date)
diff <- as.integer(difftime(bike_accidents$Date , start, units = "days"))
w <- rep(1,length(diff))
scores <- bw_cv_likelihood_calc_tkde(diff, w, seq(10,60,10), "quartic")
```
bw_tnkde_cv_likelihood_calc

Bandwidth selection by likelihood cross validation for temporal NKDE

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an appropriate bandwidth in a data-driven approach

Usage

```
bw_tnkde_cv_likelihood_calc(
 bws\_net = NULL,bws_time = NULL,
 lines,
  events,
  time_field,
  w,
  kernel_name,
 method,
  arr_bws_net = NULL,
  arr_bws_time = NULL,
  diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_net_bws = NULL,
  trim_time_bws = NULL,
```

```
max\_depth = 15,
 digits = 5,
 tol = 0.1,agg = NULL,sparse = TRUE,
 zero_strat = "min_double",
 grid\_shape = c(1, 1),sub\_sample = 1,
 verbose = TRUE,
 check = TRUE\mathcal{L}
```


The function calculates the likelihood cross validation score for several time and network bandwidths in order to find the most appropriate one. The general idea is to find the pair of bandwidths that would produce the most similar results if one event is removed from the dataset (leave one out cross validation). We use here the shortcut formula as described by the package spatstat (Baddeley et al. 2021).

 $LCV(h) = \sum_i \log \hat{\lambda}_{-i}(x_i)$

Where the sum is taken for all events x_i and where $\hat{\lambda}_{-i}(x_i)$ is the leave-one-out kernel estimate at x_i for a bandwidth h. A higher value indicates a better bandwidth.

Value

A matrix with the cross validation score. Each row corresponds to a network bandwidth and each column to a time bandwidth (the higher the better).

References

Baddeley A, Turner R, Rubak E (2021). *spatstat: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests*. R package version 2.1-0, <https://CRAN.R-project.org/package=spatstat>.

Examples

```
# loading the data
data(mtl_network)
data(bike_accidents)
# converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, min(bike_accidents$Time), units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
bike_accidents <- subset(bike_accidents, bike_accidents$Time>=89)
# calculating the cross validation values
cv_scores <- bw_tnkde_cv_likelihood_calc(
  bws_net = seq(100,1000,100),
  bws_time = seq(10, 60, 5),
  lines = mtl_network,
  events = bike_accidents,
  time_field = "Time",
  w = rep(1, nrow(bike_accidents)),kernel_name = "quartic",
  method = "discontinuous",
  diggle_correction = FALSE,
  study_area = NULL,
  max\_depth = 10,
  digits = 2,
  tol = 0.1,
  agg = 15,
  sparse=TRUE,
  grid_shape=c(1,1),
  sub_sample=1,
  verbose = FALSE,
  check = TRUE)
```
bw_tnkde_cv_likelihood_calc.mc

Bandwidth selection by likelihood cross validation for temporal NKDE (multicore)

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an appropriate bandwidth in a data-driven approach with multicore support

Usage

```
bw_tnkde_cv_likelihood_calc.mc(
 bws_net = NULL,
 bws_time = NULL,
  lines,
 events,
  time_field,
 w,
  kernel_name,
 method,
 arr_bws_net = NULL,
  arr_bws_time = NULL,
  diggle_correction = FALSE,
  study_area = NULL,
  adaptive = FALSE,
  trim_net_bws = NULL,
  trim_time_bws = NULL,
 max\_depth = 15,
 digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,zero_strat = "min_double",
  grid\_shape = c(1, 1),sub\_sample = 1,
  verbose = TRUE,
  check = TRUE
)
```


See the function bws_tnkde_cv_likelihood_calc for more details. Note that the calculation is split according to the grid_shape argument. If the grid_shape is $c(1,1)$ then only one process can be used.

Value

A matrix with the cross validation score. Each row corresponds to a network bandwidth and each column to a time bandwidth (the higher the better).

Examples

 $max_depth = 10$,

```
# loading the data
data(mtl_network)
data(bike_accidents)
# converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, min(bike_accidents$Time), units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
bike_accidents <- subset(bike_accidents, bike_accidents$Time>=89)
future::plan(future::multisession(workers=1))
# calculating the cross validation values
cv_scores <- bw_tnkde_cv_likelihood_calc.mc(
 bws_net = seq(100,1000,100),
 bws_time = seq(10, 60, 5),
 lines = mtl_network,
 events = bike_accidents,
 time_field = "Time",
 w = rep(1, nrow(bike_accidents)),kernel_name = "quartic",
 method = "discontinuous",
 diggle_correction = FALSE,
 study_area = NULL,
```

```
digits = 2,
tol = 0.1,agg = 15,
sparse=TRUE,
grid_shape=c(1,1),
sub_sample=1,
verbose = FALSE,
check = TRUE)
```

```
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
calc_isochrones *Isochrones calculation*

Description

Calculate isochrones on a network

Usage

```
calc_isochrones(
  lines,
  dists,
  start_points,
  donught = FALSE,
  mindist = 1,
  weight = NULL,direction = NULL
\mathcal{L}
```


An isochrone is the set of reachable lines around a node in a network within a specified distance (or time). This function perform dynamic segmentation to return the part of the edges reached and not only the fully covered edges. Several start points and several distances can be given. The network can also be directed. The lines returned by the function are the most accurate representation of the isochrones. However, if polygons are required for mapping, the vignette "Calculating isochrones" shows how to create smooth polygons from the returned sets of lines.

Value

A feature collection of lines representing the isochrones with the following columns

- point_id: the index of the point at the centre of the isochrone;
- distance: the size of the isochrone

Examples

```
library(sf)
# creating a simple network
wkt_lines <- c(
 "LINESTRING (0.0 0.0, 5.0 0.0)",
 "LINESTRING (0.0 -5.0, 5.0 -5.0)",
 "LINESTRING (5.0 0.0, 5.0 5.0)",
 "LINESTRING (5.0 -5.0, 5.0 -10.0)",
  "LINESTRING (5.0 0.0, 5.0 -5.0)",
  "LINESTRING (5.0 0.0, 10.0 0.0)",
  "LINESTRING (5.0 -5.0, 10.0 -5.0)",
  "LINESTRING (10.0 0, 10.0 -5.0)",
  "LINESTRING (10.0 -10.0, 10.0 -5.0)",
  "LINESTRING (15.0 -5.0, 10.0 -5.0)",
  "LINESTRING (10.0 0.0, 15.0 0.0)",
  "LINESTRING (10.0 0.0, 10.0 5.0)")
linesdf <- data.frame(wkt = wkt_lines,
                      id = paste("l", 1:length(wkt_lines), sep=""))lines \le st_as_sf(linesdf, wkt = "wkt", \text{crs} = 32188)
# and the definition of the starting point
start_points <- data.frame(x=c(5),
                           y=c(-2.5)start_points <- st_as_sf(start_points, coords = c("x","y"), crs = 32188)
# setting the directions
lines$direction <- "Both"
lines[6,"direction"] <- "TF"
```

```
isochrones <- calc_isochrones(lines,dists = c(10,12),
                             donught = TRUE,
                              start_points = start_points,
                             direction = "direction")
```
closest_points *Find closest points*

Description

Solve the nearest neighbour problem for two feature collections of points This is a simple wrap-up of the dbscan::kNN function

Usage

closest_points(origins, targets)

Arguments

Value

for each origin point, the index of the nearest target point

Examples

```
data(mtl_libraries)
data(mtl_theatres)
close_libs <- closest_points(mtl_theatres, mtl_libraries)
```
cosine_kernel *Cosine kernel*

Description

Function implementing the cosine kernel.

Usage

cosine_kernel(d, bw)

Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

cross_gfunc_cpp *c++ cross g function*

Description

c++ cross g function (INTERNAL)

Usage

```
cross_gfunc_cpp(dist_mat, start, end, step, width, Lt, na, nb, wa, wb)
```


Description

Calculate the cross k and g functions for a set of points on a network. (maturing)

Usage

```
cross_kfunctions(
  lines,
  pointsA,
  pointsB,
  start,
  end,
  step,
  width,
  nsim,
  conf\_int = 0.05,
  digits = 2,
  tol = 0.1,resolution = NULL,
  agg = NULL,verbose = TRUE,
  return_sims = FALSE
\mathcal{L}
```


The cross k-function is a method to characterize the dispersion of a set of points (A) around a second set of points (B). For each point in B, the numbers of other points in A in subsequent radii are calculated. This empirical cross k-function can be more or less clustered than a cross k-function obtained if the points in A were randomly located around points in B. In a network, the network distance is used instead of the Euclidean distance. This function uses Monte Carlo simulations to assess if the points are clustered or dispersed and gives the results as a line plot. If the line of the observed cross k-function is higher than the shaded area representing the values of the simulations, then the points in A are more clustered around points in B than what we can expect from randomness and vice-versa. The function also calculates the cross g-function, a modified version of the cross k-function using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the cumulative effect of the classical k-function. Note that the cross k-function of points A around B is not necessarily the same as the cross k-function of points B around A. This function is maturing, it works as expected (unit tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

Examples

data(main_network_mtl) data(mtl_libraries)

```
data(mtl_theatres)
result <- cross_kfunctions(main_network_mtl, mtl_theatres, mtl_libraries,
                           start = 0, end = 2500, step = 10, width = 250,
                           nsim = 50, conf(int = 0.05, digits = 2,tol = 0.1, agg = NULL, verbose = FALSE)
```
cross_kfunctions.mc *Network cross k and g functions (multicore, maturing)*

Description

Calculate the cross k and g functions for a set of points on a network with multicore support. (maturing)

Usage

```
cross_kfunctions.mc(
  lines,
 pointsA,
 pointsB,
  start,
  end,
  step,
 width,
 nsim,
  conf\_int = 0.05,
  digits = 2,
  tol = 0.1,resolution = NULL,
  agg = NULL,verbose = TRUE,
  return_sims = FALSE
)
```


Value

A list with the following values :

Examples

```
data(main_network_mtl)
data(mtl_libraries)
data(mtl_theatres)
future::plan(future::multisession(workers=1))
result <- cross_kfunctions.mc(main_network_mtl, mtl_libraries, mtl_theatres,
                           start = 0, end = 2500, step = 10, width = 250,
                           nsim = 50, conf\_int = 0.05, digits = 2,
                           tol = 0.1, agg = NULL, verbose = TRUE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
cross_kfunc_cpp *c++ cross k function*

Description

c++ cross k function

Usage

cross_kfunc_cpp(dist_mat, start, end, step, Lt, na, nb, wa, wb)

Arguments

epanechnikov_kernel *Epanechnikov kernel*

Description

Function implementing the epanechnikov kernel.

Usage

epanechnikov_kernel(d, bw)

Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

esc_kernel_loo_nkde *The worker function to calculate continuous TNKDE likelihood cv*

Description

The worker function to calculate continuous TNKDE likelihood cv (INTERNAL)

Arguments

Value

a cube with the impact of the event v on each other events for each pair of bandwidths (cube(bws_net, bws_time, events))

esc_kernel_loo_tnkde *The worker function to calculate continuous TNKDE likelihood cv*

Description

The worker function to calculate continuous TNKDE likelihood cv (INTERNAL)

Value

a cube with the impact of the event v on each other event for each pair of bandwidths (cube(bws_net, bws_time, events))

esd_kernel_loo_nkde *The worker function to calculate discontinuous TNKDE likelihood cv*

Description

The worker function to calculate discontinuous TNKDE likelihood cv (INTERNAL)

Arguments

Value

a cube with the impact of the event v on each other events for each pair of bandwidths (cube(bws_net, bws_time, events))

esd_kernel_loo_tnkde *The worker function to calculate discontinuous TNKDE likelihood cv*

Description

The worker function to calculate discontinuous TNKDE likelihood cv (INTERNAL)

Arguments

Value

a cube with the impact of the event v on each other event for each pair of bandwidths (cube(bws_net, bws_time, events))

gaussian_kernel *Gaussian kernel*

Description

Function implementing the gaussian kernel.

Usage

gaussian_kernel(d, bw)

Value

The estimated density

Examples

#This is an internal function, no example provided

gaussian_kernel_scaled

Scaled gaussian kernel

Description

Function implementing the scaled gaussian kernel.

Usage

gaussian_kernel_scaled(d, bw)

Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

Description

```
c++ g function (INTERNAL)
```
Usage

```
gfunc_cpp(dist_mat, start, end, step, width, Lt, n, w)
```
graph_checking 43

Arguments

Value

A numeric vector with the values of the g function evaluated at the required distances

Description

A utility function to find topological errors in a network.

Usage

```
graph_checking(lines, digits, max_search = 5, tol = 0.1)
```
Arguments

Details

This function can be used to check for three common problems in networks: disconnected components, dangle nodes and close nodes. When a network has disconnected components, this means that several unconnected graphs are composing the overall network. This can be caused by topological errors in the dataset. Dangle nodes are nodes connected to only one other node. This type of node can be normal at the border of a network, but can also be caused by topological errors. Close nodes are nodes that are not coincident, but so close that they probably should be coincident.

Value

A list with three elements. The first is a feature collection of points indicating for each node of the network to which component it belongs. The second is a feature collection of points with nodes that are too close one of each other. The third is a feature collection of points with the dangle nodes of the network.

Examples

```
data(mtl_netowrk)
topo_errors <- graph_checking(mtl_network, 2)
```
kfunctions *Network k and g functions (maturing)*

Description

Calculate the k and g functions for a set of points on a network (maturing).

Usage

```
kfunctions(
  lines,
  points,
  start,
  end,
  step,
 width,
  nsim,
  conf\_int = 0.05,
  digits = 2,
  tol = 0.1,resolution = NULL,
  agg = NULL,verbose = TRUE,
  return_sims = FALSE
```
\mathcal{L}

kfunctions 45

Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the numbers of other points in subsequent radii are calculated. This empirical k-function can be more or less clustered than a k-function obtained if the points were randomly located in space. In a network, the network distance is used instead of the Euclidean distance. This function uses Monte Carlo simulations to assess if the points are clustered or dispersed, and gives the results as a line plot. If the line of the observed k-function is higher than the shaded area representing the values of the simulations, then the points are more clustered than what we can expect from randomness and vice-versa. The function also calculates the g-function, a modified version of the k-function using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the cumulative effect of the classical k-function. This function is maturing, it works as expected (unit tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

- plotk: A ggplot2 object representing the values of the k-function
- plotg: A ggplot2 object representing the values of the g-function
- values: A DataFrame with the values used to build the plots

Examples

```
data(main_network_mtl)
data(mtl_libraries)
result <- kfunctions(main_network_mtl, mtl_libraries,
     start = 0, end = 2500, step = 10,
    width = 200, nsim = 50,
    conf_{int} = 0.05, tol = 0.1, agg = NULL,
     verbose = FALSE)
```
kfunctions.mc *Network k and g functions (multicore, maturing)*

Description

Calculate the k and g functions for a set of points on a network with multicore support. For details, please see the function kfunctions. (maturing)

Usage

```
kfunctions.mc(
  lines,
 points,
  start,
  end,
  step,
 width,
 nsim,
  conf\_int = 0.05,
  digits = 2,
  tol = 0.1,resolution = 50,
  agg = NULL,verbose = TRUE,
  return_sims = FALSE
)
```


Details

For details, please look at the function kfunctions.

Value

A list with the following values :

- plotk: A ggplot2 object representing the values of the k-function
- plotg: A ggplot2 object representing the values of the g-function
- values: A DataFrame with the values used to build the plots

Examples

```
data(main_network_mtl)
data(mtl_libraries)
future::plan(future::multisession(workers=1))
result <- kfunctions.mc(main_network_mtl, mtl_libraries,
     start = 0, end = 2500, step = 10,
     width = 200, nsim = 50,
     conf\_int = 0.05, tol = 0.1, agg = NULL,
     verbose = FALSE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
Description

c++ k function (INTERNAL)

Usage

kfunc_cpp(dist_mat, start, end, step, Lt, n, w)

Arguments

Value

A numeric vector with the values of the k function evaluated at the required distances

Description

Calculate the k and g functions for a set of points on a network and in time (experimental, NOT READY FOR USE).

Usage

```
k_nt_functions(
  lines,
  points,
 points_time,
  start_net,
  end_net,
  step_net,
  width_net,
```
k_nt_functions 49

```
start_time,
 end_time,
 step_time,
 width_time,
 nsim,
 conf\_int = 0.05,
 digits = 2,
 tol = 0.1,resolution = NULL,
 agg = NULL,verbose = TRUE
\mathcal{L}
```


Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the numbers of other points in subsequent radii are calculated in both space and time. This empirical k-function can be more or less clustered than a k-function obtained if the points were randomly located . In a network, the network distance is used instead of the Euclidean distance. This function uses Monte Carlo simulations to assess if the points are clustered or dispersed. The function also calculates the g-function, a modified version of the k-function using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the cumulative effect of the classical k-function. This function is maturing, it works as expected (unit tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

- obs_k: A matrix with the observed k-values
- lower_k: A matrix with the lower bounds of the simulated k-values
- upper_k: A matrix with the upper bounds of the simulated k-values
- obs_g: A matrix with the observed g-values
- lower g: A matrix with the lower bounds of the simulated g-values
- upper g: A matrix with the upper bounds of the simulated g-values
- distances_net: A vector with the used network distances
- distances_time: A vector with the used time distances

Examples

```
data(mtl_network)
data(bike_accidents)
```

```
# converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
```

```
values <- k_nt_functions(
     lines = mtl_network,
     points = bike_accidents,
```
k_nt_functions.mc 51

```
points_time = bike_accidents$Time,
start_net = 0,
end_net = 2000,
step_net = 10,
width\_net = 200,start_time = 0,
end_time = 360,step_time = 7,
width_time = 14,
nsim = 50,conf\_int = 0.05,
digits = 2,
tol = 0.1,resolution = NULL,
agg = 15,
verbose = TRUE)
```


Description

Calculate the k and g functions for a set of points on a network and in time (multicore, experimental, NOT READY FOR USE).

Usage

```
k_nt_functions.mc(
  lines,
  points,
  points_time,
  start_net,
  end_net,
  step_net,
  width_net,
  start_time,
  end_time,
  step_time,
 width_time,
  nsim,
  conf\_int = 0.05,
  digits = 2,
  tol = 0.1,resolution = NULL,
  agg = NULL,
  verbose = TRUE
\mathcal{L}
```
Arguments

Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the numbers of other points in subsequent radii are calculated. This empirical k-function can be more or less clustered than a k-function obtained if the points were randomly located in space. In a

lines_center 53

network, the network distance is used instead of the Euclidean distance. This function uses Monte Carlo simulations to assess if the points are clustered or dispersed, and gives the results as a line plot. If the line of the observed k-function is higher than the shaded area representing the values of the simulations, then the points are more clustered than what we can expect from randomness and vice-versa. The function also calculates the g-function, a modified version of the k-function using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the cumulative effect of the classical k-function. This function is maturing, it works as expected (unit tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

- obs_k: A matrix with the observed k-values
- lower_k: A matrix with the lower bounds of the simulated k-values
- upper k: A matrix with the upper bounds of the simulated k-values
- obs_g: A matrix with the observed g-values
- lower_g: A matrix with the lower bounds of the simulated g-values
- upper_g: A matrix with the upper bounds of the simulated g-values
- distances_net: A vector with the used network distances
- distances_time: A vector with the used time distances

lines_center *Centre points of lines*

Description

Generate a feature collection of points at the centre of the lines of a feature collection of linestrings. The length of the lines is used to determine their centres.

Usage

lines_center(lines)

Arguments

lines A feature collection of linestrings to use

Value

A feature collection of points

Examples

```
data(mtl_network)
centers <- lines_center(mtl_network)
```
lines_direction *Unify lines direction*

Description

A function to deal with the directions of lines. It ensures that only From-To situation are present by reverting To-From lines. For the lines labelled as To-From, the order of their vertices is reverted.

Usage

```
lines_direction(lines, field)
```
Arguments

Value

A sf object with linestring type geometries

Examples

```
data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
mtl_network$direction <- "Both"
mtl_network[6, "direction"] <- "TF"
mtl_network_directed <- lines_direction(mtl_network, "direction")
```
lines_extremities *Get lines extremities*

Description

Generate a feature collection of points with the first and last vertex of each line in a feature collection of linestrings.

Usage

```
lines_extremities(lines)
```
Arguments

lines A feature collection of linestrings (simple Linestrings)

lines_points_along 55

Value

A feature collection of points

Examples

```
data(mtl_network)
points <- lines_extremities(mtl_network)
```
lines_points_along *Points along lines*

Description

Generate a feature collection of points along the lines of feature collection of Linestrings.

Usage

lines_points_along(lines, dist)

Arguments

Value

A feature collection of points

Examples

```
data(mtl_network)
new_pts <- lines_points_along(mtl_network,50)
```
lixelize_lines *Cut lines into lixels*

Description

Cut the lines of a feature collection of linestrings into lixels with a specified minimal distance may fail if the line geometries are self intersecting.

Usage

```
lixelize_lines(lines, lx_length, mindist = NULL)
```
Arguments

Value

An sf object with linestring geometry type

Examples

```
data(mtl_network)
lixels <- lixelize_lines(mtl_network,150,50)
```
lixelize_lines.mc *Cut lines into lixels (multicore)*

Description

Cut the lines of a feature collection of linestrings into lixels with a specified minimal distance may fail if the line geometries are self intersecting with multicore support.

Usage

```
lixelize_lines.mc(
  lines,
  lx_length,
  mindist = NULL,
  verbose = TRUE,
  chunk_size = 100
\mathcal{L}
```


main_network_mtl 57

Value

A feature collection of linestrings

Examples

```
data(mtl_network)
future::plan(future::multisession(workers=1))
lixels <- lixelize_lines.mc(mtl_network,150,50)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")){
future::plan(future::sequential)
}
```
main_network_mtl *Primary road network of Montreal*

Description

A feature collection (sf object) representing the primary road network of Montreal. The EPSG is 3797, and the data comes from the Montreal OpenData website.

Usage

main_network_mtl

Format

A sf object with 2945 rows and 2 variables

TYPE the type of road

geom the geometry (linestrings)

Source

<https://donnees.montreal.ca/dataset/geobase>

Description

A feature collection (sf object) representing the libraries of Montreal. The EPSG is 3797 and the data comes from the Montreal OpenData website.

Usage

mtl_libraries

Format

A sf object with 55 rows and 3 variables.

CP the postal code NAME the name of the library geom the geometry (points)

Source

<https://donnees.montreal.ca/dataset/lieux-culturels>

mtl_network *Road network of Montreal*

Description

A feature collection (sf object) representing the road network of Montreal. The EPSG is 3797, and the data comes from the Montreal OpenData website. It is only a small subset in central districts used to demonstrate the main functions of spNetwork.

Usage

mtl_network

Format

A sf object with 2945 rows and 2 variables

ClsRte the category of the road

geom the geometry (linestrings)

Source

<https://donnees.montreal.ca/dataset/geobase>

Description

A feature collection (sf object) representing the theatres of Montreal. The EPSG is 3797 and the data comes from the Montreal OpenData website.

Usage

mtl_theatres

Format

A sf object with 54 rows and 3 variables.

CP the postal code NAME the name of the theatre geom the geometry (points)

Source

<https://donnees.montreal.ca/dataset/lieux-culturels>

network_knn *K-nearest points on network*

Description

Calculate the K-nearest points for a set of points on a network.

Usage

```
network_knn(
  origins,
  lines,
 k,
  destinations = NULL,
  maxdistance = 0,
  snap_dist = Inf,
  line_weight = "length",
  direction = NULL,
  grid\_shape = c(1, 1),verbose = FALSE,
  digits = 3,
  tol = 0.1)
```
Arguments

Details

The k nearest neighbours of each point are found by using the network distance. The results could not be exact if some points share the exact same location. As an example, consider the following case. If A and B are two points at the exact same location, and C is a third point close to A and B. If the 1 nearest neighbour is requested for C, the function could return either A or B but not both. When such situation happens, a warning is raised by the function.

Value

A list with two matrices, one with the index of the neighbours and one with the distances.

Examples

```
data(main_network_mtl)
data(mtl_libraries)
```

```
results <- network_knn(mtl_libraries, main_network_mtl,
   k = 3, maxdistance = 1000, line_weight = "length",
   grid_shape=c(1,1), verbose = FALSE)
```
network_knn.mc *K-nearest points on network (multicore version)*

Description

Calculate the K-nearest points for a set of points on a network with multicore support.

Usage

```
network_knn.mc(
  origins,
  lines,
 k,
  destinations = NULL,
 maxdistance = 0,
  snap\_dist = Inf,line_weight = "length",
 direction = NULL,
  grid\_shape = c(1, 1),verbose = FALSE,
 digits = 3,
  tol = 0.1)
```


Value

A list with two matrices, one with the index of the neighbours and one with the distances.

Examples

```
data(main_network_mtl)
data(mtl_libraries)
future::plan(future::multisession(workers=1))
results <- network_knn.mc(mtl_libraries, main_network_mtl,
   k = 3, maxdistance = 1000, line_weight = "length",
   grid\_shape=c(1,1), verbose = FALSE)## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
network_listw *Network distance listw*

Description

Generate listw object (spdep like) based on network distances.

Usage

```
network_listw(
  origins,
  lines,
 maxdistance,
  method = "centroid",
  point_dist = NULL,
  snap\_dist = Inf,line_weight = "length",
```
network_listw 63

```
mindist = 10,
  direction = NULL,
 dist_func = "inverse",\text{matrice\_type} = \text{"B",}grid_shape = c(1, 1),
  verbose = FALSE,
 digits = 3,
  tol = 0.1\mathcal{L}
```


Value

A listw object (spdep like) if matrice_type is "B" or "W". If matrice_type is I, then a list with a nblist object and a list of weights is returned.

Examples

```
data(mtl_network)
listw <- network_listw(mtl_network, mtl_network, maxdistance = 500,
       method = "centroid", line_weight = "length",
       dist_func = 'squared inverse', matrice_type='B', grid_shape = c(2,2))
```
network_listw.mc *Network distance listw (multicore)*

Description

Generate listw object (spdep like) based on network distances with multicore support.

Usage

```
network_listw.mc(
  origins,
 lines,
 maxdistance,
 method = "centroid",
  point_dist = NULL,
  snap_dist = Inf,
  line_weight = "length",
 mindist = 10,
  direction = NULL,
  dist_func = "inverse",
 matrice_type = "B",grid\_shape = c(1, 1),verbose = FALSE,
  digits = 3,
  tol = 0.1)
```


Value

A listw object (spdep like) if matrice_type is "B" or "W". If matrice_type is I, then a list with a nblist object and a list of weights is returned.

Examples

```
data(mtl_network)
future::plan(future::multisession(workers=1))
listw <- network_listw.mc(mtl_network,mtl_network,maxdistance=500,
       method = "centroid", line_weight = "length",
       dist_func = 'squared inverse', matrice_type='B', grid_shape = c(2,2))
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
Description

Calculate the Network Kernel Density Estimate based on a network of lines, sampling points, and events

Usage

```
nkde(
  lines,
  events,
 w,
  samples,
  kernel_name,
 bw,
  adaptive = FALSE,
  trim_bw = NULL,method,
  div = "bw",diggle_correction = FALSE,
  study_area = NULL,
 max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,
  grid\_shape = c(1, 1),verbose = TRUE,
  check = TRUE
```
Arguments

)

nkde to be a state of the state o

Details

The three NKDE methods

Estimating the density of a point process is commonly done by using an ordinary two-dimensional

kernel density function. However, there are numerous cases for which the events do not occur in a two-dimensional space but on a network (like car crashes, outdoor crimes, leaks in pipelines, etc.). New methods were developed to adapt the methodology to networks, three of them are available in this package.

- The simple method: This first method was presented by (Xie and Yan 2008) and proposes an intuitive solution. The distances between events and sampling points are replaced by network distances, and the formula of the kernel is adapted to calculate the density over a linear unit instead of an areal unit.
- The discontinuous method: The previous method has been criticized by (Okabe et al. 2009), arguing that the estimator proposed is biased, leading to an overestimation of density in events hot-spots. More specifically, the simple method does not conserve mass and the induced kernel is not a probability density along the network. They thus proposed a discontinuous version of the kernel function on network, which equally "divides" the mass density of an event at intersections.
- The continuous method: If the discontinuous method is unbiased, it leads to a discontinuous kernel function which is a bit counter-intuitive. Okabe et al. (2009) proposed another version of the kernel, which divides the mass of the density at intersections but adjusts the density before the intersection to make the function continuous.

The three methods are available because, even though that the simple method is less precise statistically speaking, it might be more intuitive. From a purely geographical view, it might be seen as a sort of distance decay function as used in Geographically Weighted Regression.

adaptive bandwidth

It is possible to use adaptive bandwidth instead of fixed bandwidth. Adaptive bandwidths are calculated using the Abramson's smoothing regimen (Abramson 1982). To do so, an original fixed bandwidth must be specified (bw parameter), and is used to estimate the priory densitiy at event locations. These densities are then used to calculate local bandwidth. The maximum size of the local bandwidth can be limited with the parameter trim bw. For more details, see the vignettes.

Optimization parameters

The grid_shape parameter allows to split the calculus of the NKDE according to a grid dividing the study area. It might be necessary for big dataset to reduce the memory used. If the grid_shape is $c(1,1)$, then a full network is built for the area. If the grid_shape is $c(2,2)$, then the area is split in 4 rectangles. For each rectangle, the sample points falling in the rectangle are used, the events and the lines in a radius of the bandwidth length are used. The results are combined at the end and ordered to match the original order of the samples.

The geographical coordinates of the start and end of lines are used to build the network. To avoid troubles with digits, we truncate the coordinates according to the digit parameter. A minimal loss of precision is expected but results in a fast construction of the network.

To calculate the distances on the network, all the events are added as vertices. To reduce the size of the network, it is possible to reduce the number of vertices by adding the events at the extremity of the lines if they are close to them. This is controlled by the parameter tol.

In the same way, it is possible to limit the number of vertices by aggregating the events that are

close to each other. In that case, the weights of the aggregated events are summed. According to an aggregation distance, a buffer is drawn around the fist event, all events falling in that buffer are aggregated to the first event, forming a new event. The coordinates of this new event are the means of the original events coordinates. This procedure is repeated until no events are aggregated. The aggregation distance can be fixed with the parameter agg.

When using the continuous and discontinuous kernel, the density is reduced at each intersection crossed. In the discontinuous case, after 5 intersections with four directions each, the density value is divided by 243 leading to very small values. In the same situation but with the continuous NKDE, the density value is divided by approximately 7.6. The max_depth parameters allows the user to control the maximum depth of these two NKDE. The base value is 15, but a value of 10 would yield very close estimates. A lower value might have a critical impact on speed when the bandwidth is large.

When using the continuous and discontinuous kernel, the connections between graph nodes are stored in a matrix. This matrix is typically sparse, and so a sparse matrix object is used to limit memory use. If the network is small (typically when the grid used to split the data has small rectangles) then a classical matrix could be used instead of a sparse one. It significantly increases speed, but could lead to memory issues.

Value

A vector of values, they are the density estimates at sampling points

References

Abramson IS (1982). "On bandwidth variation in kernel estimates-a square root law." *The annals of Statistics*, 1217–1223.

Okabe A, Satoh T, Sugihara K (2009). "A kernel density estimation method for networks, its computational method and a GIS-based tool." *International Journal of Geographical Information Science*, 23(1), 7–32.

Xie Z, Yan J (2008). "Kernel density estimation of traffic accidents in a network space." *Computers, environment and urban systems*, 32(5), 396–406.

Examples

```
data(mtl_network)
data(bike_accidents)
lixels <- lixelize_lines(mtl_network,200,mindist = 50)
samples <- lines_center(lixels)
densities <- nkde(mtl_network,
                  events = bike_accidents,
                  w = rep(1, nrow(bike_accidents)),samples = samples,
                  kernel_name = "quartic",
                  bw = 300, div = "bw",adaptive = FALSE,
                  method = "discontinuous", digits = 1, tol = 1,
```
nkde to be a state of the state o

 $agg = 15$, $grid_shape = c(1,1)$, verbose=FALSE)

nkde.mc *Network Kernel density estimate (multicore)*

Description

Calculate the Network Kernel Density Estimate based on a network of lines, sampling points, and events with multicore support.

Usage

```
nkde.mc(
  lines,
  events,
 w,
  samples,
  kernel_name,
 bw,
  adaptive = FALSE,
  trim_bw = NULL,method,
  div = "bw",diggle_correction = FALSE,
  study_area = NULL,
 max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,
  grid\_shape = c(1, 1),verbose = TRUE,
  check = TRUE
```
)

nkde.mc 71

Details

For more details, see help(nkde)

Value

A vector of values, they are the density estimates at sampling points

Examples

```
data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
lixels <- lixelize_lines(mtl_network,200,mindist = 50)
samples <- lines_center(lixels)
densities <- nkde.mc(mtl_network,
                  events = bike_accidents,
                  w = rep(1,nrow(bike_accidents)),
                  samples = samples,
                  kernel_name = "quartic",
                  bw = 300, div= "bw",
                  adaptive = FALSE, agg = 15,
                  method = "discontinuous", digits = 1, tol = 1,
                  grid\_shape = c(3,3),
                  verbose=TRUE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
nkde_get_loo_values *The exposed function to calculate NKDE likelihood cv*

Description

The exposed function to calculate NKDE likelihood cv (INTERNAL)

Usage

```
nkde_get_loo_values(
 method,
 neighbour_list,
  sel_events,
  sel_events_wid,
  events,
  events_wid,
  weights,
 bws_net,
  kernel_name,
  line_list,
```
```
max_depth,
cvl
```
Arguments

 \mathcal{L}

Value

a vector with the CV score for each bandwidth and the densities if required

Examples

no example provided, this is an internal function

quartic_kernel *Quartic kernel*

Description

Function implementing the quartic kernel.

Usage

quartic_kernel(d, bw)

The estimated density

Examples

#This is an internal function, no example provided

simple_lines *LineString to simple Line*

Description

Split the polylines of a feature collection of linestrings in simple segments at each vertex. The values of the columns are duplicated for each segment.

Usage

```
simple_lines(lines)
```
Arguments

lines The featue collection of linestrings to modify

Value

An featue collection of linestrings

Examples

```
data(mtl_network)
new_lines <- simple_lines(mtl_network)
```
simplify_network *Simplify a network*

Description

Simplify a network by applying two corrections: Healing edges and Removing mirror edges (experimental).

simplify_network 75

Usage

```
simplify_network(
  lines,
  digits = 3,
  heal = TRUE,mirror = TRUE,
  keep_shortest = TRUE,
  verbose = TRUE
)
```
Arguments

Details

Healing is the operation to merge two connected linestring if the are intersecting at one extremity and do not intersect any other linestring. It helps to reduce the complexity of the network and thus can reduce calculation time. Removing mirror edges is the operation to remove edges that have the same extremities. If two edges start at the same point and end at the same point, they do not add information in the network and one can be removed to simplify the network. One can decide to keep the longest of the two edges or the shortest. NOTE: the edge healing does not consider lines directions currently!

Value

A feature collection of linestrings

Examples

```
data(mtl_network)
edited_lines <- simplify_network(mtl_network, digits = 3, verbose = FALSE)
```
small_mtl_network *Smaller subset road network of Montreal*

Description

A feature collection (sf object) representing the road network of Montreal. The EPSG is 3797, and the data comes from the Montreal OpenData website. It is only a small extract in central districts used to demonstrate the main functions of spNetwork. It is mainly used internally for tests.

Usage

small_mtl_network

Format

A sf object with 1244 rows and 2 variables

TYPE the type of road

geom the geometry (linestrings)

Source

<https://donnees.montreal.ca/dataset/geobase>

Description

An object (c++ pointer) that uses the geometry index library from boost to perform spatial queries

Arguments

x • A numeric matrix with 4 columns (minX, minY, maxX, maxY)

Value

a new instance of the spatial_index class (c++ pointer)

Examples

no example provided, this is an internal class

spatial_request *Spatial request*

Description

Use a quadtree index to perform spatial request.

Usage

spatial_request(geometry, tree, data)

Arguments

Value

a subset of data, intersecting geometry

Examples

```
data(mtl_network)
tree <- build_quadtree(mtl_network)
buff <- sf::st_buffer(mtl_network[55,], 50)
selection <- spatial_request(buff, tree, mtl_network)
```
split_graph_components

Split graph components

Description

Function to split the results of build_graph and build_graph_directed into their sub components

Usage

split_graph_components(graph_result)

Arguments

graph_result A list typically obtained from the function build_graph or build_graph_directed

A list of lists, the graph_result split for each graph component

Examples

```
data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
graph_result <- build_graph(mtl_network, 2, "length", attrs = TRUE)
sub_elements <- split_graph_components(graph_result)
```
split_lines_at_vertex *Split lines at vertices in a feature collection of linestrings*

Description

Split lines (feature collection of linestrings) at their nearest vertices (feature collection of points), may fail if the line geometries are self intersecting.

Usage

```
split_lines_at_vertex(lines, points, nearest_lines_idx, mindist)
```
Arguments

Value

A feature collection of linestrings

Examples

```
# reading the data
data(mtl_network)
data(bike_accidents)
# aggregating points within a 5 metres radius
bike_accidents$weight <- 1
agg_points <- aggregate_points(bike_accidents, 5)
mtl_network$LineID <- 1:nrow(mtl_network)
# snapping point to lines
snapped_points <- snapPointsToLines2(agg_points,
   mtl_network,
    "LineID"
```
st_bbox_by_feature 79

```
)
# splitting lines
new_lines <- split_lines_at_vertex(mtl_network, snapped_points,
    snapped_points$nearest_line_id, 1)
```
st_bbox_by_feature *Obtain all the bounding boxes of a feature collection*

Description

Obtain all the bounding boxes of a feature collection (INTERNAL).

Usage

st_bbox_by_feature(x)

Arguments

x a feature collection

Value

a matrix (xmin, ymin, xmax, ymax)

Examples

#This is an internal function, no example provided

tkde *Temporal Kernel density estimate*

Description

Calculate the Temporal kernel density estimate based on sampling points in time and events

Usage

```
tkde(events, w, samples, bw, kernel_name, adaptive = FALSE)
```


A numeric vector with the density values at the requested timestamps

Examples

```
data(bike_accidents)
bike_accidents$Date <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- min(bike_accidents$Date)
diff <- as.integer(difftime(bike_accidents$Date , start, units = "days"))
density <- tkde(diff, rep(1,length(diff)), seq(0,max(diff),1), 2, "quartic")
```
tnkde *Temporal Network Kernel density estimate*

Description

Calculate the Temporal Network Kernel Density Estimate based on a network of lines, sampling points in space and times, and events in space and time.

Usage

```
tnkde(
  lines,
  events,
  time_field,
  w,
  samples_loc,
  samples_time,
  kernel_name,
  bw_net,
  bw_time,
  adaptive = FALSE,
  adaptive_separate = TRUE,
  trim_bw_net = NULL,
  trim_bw_time = NULL,
 method,
  div = "bw",diggle_correction = FALSE,
  study_area = NULL,
 max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,
  sparse = TRUE,
  grid\_shape = c(1, 1),
 verbose = TRUE,
  check = TRUE)
```
tnkde 81

Details

Temporal Network Kernel Density Estimate

The TNKDE is an extension of the NKDE considering both the location of events on the network and in time. Thus, density estimation (density sampling) can be done along lines of the network and at different time. It can be used with the three NKDE (simple, discontinuous and continuous).

density in time and space

Two bandwidths must be provided, one for the network distance and one for the time distance. They are both used to calculate the contribution of each event to each sampling point. Let us consider one event E and a sample S. dnet(E,S) is the contribution to network density of E at S location and dtime(E ,S) is the contribution to time density of E at S time. The total contribution is thus dnet(E ,S) * dtime(E,S). If one of the two densities is 0, then the total density is 0 because the sampling point is out of the covered area by the event in time or in the network space.

adaptive bandwidth

It is possible to use an adaptive bandwidth both on the network and in time. Adaptive bandwidths are calculated using the Abramson's smoothing regimen (Abramson 1982). To do so, the original fixed bandwidths must be specified (bw_net and bw_time parameters). The maximum size of the two local bandwidths can be limited with the parameters trim_bw_net and trim_bw_time.

Diggle correction factor

A set of events can be limited in both space (limits of the study area) and time (beginning and ending of the data collection period). These limits induce lower densities at the border of the set of events, because they are not sampled outside the limits. It is possible to apply the Diggle correction factor (Diggle 1985) in both the network and time spaces to minimize this effect.

Separated or simultaneous adaptive bandwidth

When the parameter adaptive is TRUE, one can choose between using separated calculation of network and temporal bandwidths, and calculating them simultaneously. In the first case (default), the network bandwidths are determined for each event by considering only their locations and the time bandwidths are determined by considering only there time stamps. In the second case, for each event, the spatio-temporal density at its location on the network and in time is estimated and used to determine both the network and temporal bandwidths. This second approach must be preferred if the events are characterized by a high level of spatio-temporal autocorrelation.

Value

A matrix with the estimated density for each sample point (rows) at each timestamp (columns). If adaptive = TRUE, the function returns a list with two slots: k (the matrix with the density values) and events (a feature collection of points with the local bandwidths).

Examples

```
# loading the data
data(mtl_network)
data(bike_accidents)
# converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
# creating sample points
lixels <- lixelize_lines(mtl_network, 50)
sample_points <- lines_center(lixels)
# choosing sample in times (every 10 days)
sample_time <- seq(0, max(bike_accidents$Time), 10)
# calculating the densities
tnkde_densities <- tnkde(lines = mtl_network,
   events = bike_accidents, time_field = "Time",
   w = rep(1, nrow(bike_accidents)),samples_loc = sample_points,
    samples_time = sample_time,
   kernel_name = "quartic",
   bw\_net = 700, bw\_time = 60, adaptive = TRUE,
    trim_bw\_net = 900, trim_bw\_time = 80,
   method = "discontinuous", div = "bw",max_{def} = 10, digits = 2, tol = 0.01,
   agg = 15, grid\_shape = c(1,1),
   verbose = FALSE)
```


Description

Calculate the Temporal Network Kernel Density Estimate based on a network of lines, sampling points in space and times, and events in space and time with multicore support.

Usage

```
tnkde.mc(
  lines,
  events,
  time_field,
  w,
  samples_loc,
  samples_time,
  kernel_name,
  bw_net,
  bw_time,
  adaptive = FALSE,
  adaptive_separate = TRUE,
  trim_bw_net = NULL,
  trim_bw_time = NULL,
  method,
  div = "bw",diggle_correction = FALSE,
  study_area = NULL,
  max\_depth = 15,
  digits = 5,
  tol = 0.1,agg = NULL,sparse = TRUE,
  grid\_shape = c(1, 1),verbose = TRUE,
  check = TRUE
```
)

tnkde.mc 85

Details

For details, see help(tnkde) and help(nkde)

Value

A matrix with the estimated density for each sample point (rows) at each timestamp (columns). If adaptive = TRUE, the function returns a list with two slots: k (the matrix with the density values) and events (a feature collection of points with the local bandwidths).

Examples

```
# loading the data
data(mtl_network)
data(bike_accidents)
```

```
# converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
```

```
# creating sample points
lixels <- lixelize_lines(mtl_network, 50)
sample_points <- lines_center(lixels)
```

```
# choosing sample in times (every 10 days)
sample_time <- seq(0, max(bike_accidents$Time), 10)
```

```
future::plan(future::multisession(workers=1))
```

```
# calculating the densities
tnkde_densities <- tnkde.mc(lines = mtl_network,
   events = bike_accidents, time_field = "Time",
   w = rep(1, nrow(bike_accidents)),samples_loc = sample_points,
   samples_time = sample_time,
   kernel_name = "quartic",
   bw_net = 700, bw_time = 60, adaptive = TRUE,
   trim\_bw\_net = 900, trim\_bw\_time = 80,
   method = "discontinuous", div = "bw",
   max\_depth = 10, digits = 2, tol = 0.01,
```

```
agg = 15, grid\_shape = c(1,1),
   verbose = FALSE)
## make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)
```
tnkde_get_loo_values *The exposed function to calculate TNKDE likelihood cv*

Description

The exposed function to calculate TNKDE likelihood cv (INTERNAL)

Usage

```
tnkde_get_loo_values(
 method,
 neighbour_list,
  sel_events,
  sel_events_wid,
  sel_events_time,
 events,
 events_wid,
  events_time,
 weights,
 bws_net,
 bws_time,
 kernel_name,
 line_list,
 max_depth,
 min_tol
)
```


a matrix with the CV score for each pair of bandiwdths

Examples

no example provided, this is an internal function

tnkde_get_loo_values2 *The exposed function to calculate TNKDE likelihood cv*

Description

The exposed function to calculate TNKDE likelihood cv (INTERNAL) when an adaptive bandwidth is used

Usage

```
tnkde_get_loo_values2(
 method,
 neighbour_list,
  sel_events,
  sel_events_wid,
  sel_events_time,
 events,
  events_wid,
 events_time,
 weights,
 bws_net,
 bws_time,
 kernel_name,
 line_list,
 max_depth,
 min_tol
)
```
Arguments

Value

a matrix with the CV score for each pair of global bandiwdths

Examples

no example provided, this is an internal function

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an appropriate bandwidth in a data-driven approach (INTERNAL)

Usage

```
tnkde_worker_bw_sel(
 lines,
 quad_events,
 events_loc,
 events,
 w,
 kernel_name,
 bws_net,
 bws_time,
 method,
 div,
 digits,
 tol,
 sparse,
 max_depth,
 verbose = FALSE,
 cv1 = FALSE
```

```
\mathcal{L}
```


An array with the CV score for each pair of bandiwdths (rows and lines) for each event (slices)

Examples

no example provided, this is an internal function

triangle_kernel *triangle kernel*

Description

Function implementing the triangle kernel.

Usage

triangle_kernel(d, bw)

Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

tricube_kernel *Tricube kernel*

Description

Function implementing the tricube kernel.

Usage

tricube_kernel(d, bw)

Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

triweight_kernel *Triweight kernel*

Description

Function implementing the triweight kernel.

Usage

```
triweight_kernel(d, bw)
```
Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

uniform_kernel *Uniform kernel*

Description

Function implementing the uniform kernel.

Usage

```
uniform_kernel(d, bw)
```
Arguments

Value

The estimated density

Examples

#This is an internal function, no example provided

worker_adaptive_bw_tnkde

Worker function for adaptive bandwidth for TNDE

Description

The worker function to calculate Adaptive bandwidths according to Abramson's smoothing regimen for TNKDE with a space-time interaction (INTERNAL).

Usage

```
worker_adaptive_bw_tnkde(
  lines,
  quad_events,
  events_loc,
  events,
 w,
  kernel_name,
  bw_net,
  bw_time,
  method,
```

```
div,
digits,
tol,
sparse,
max_depth,
verbose = FALSE
```
 \mathcal{L}

Arguments

Value

A vector with the local bandwidths or an array if bw_net and bw_time are vectors

Examples

#This is an internal function, no example provided

Index

∗ datasets bike_accidents, [8](#page-7-0) main_network_mtl, [57](#page-56-0) mtl_libraries, [58](#page-57-0) mtl_network, [58](#page-57-0) mtl theatres. [59](#page-58-0) small_mtl_network, [76](#page-75-0) adaptive_bw_tnkde_cpp, [5](#page-4-0) adaptive_bw_tnkde_cpp2, [6](#page-5-0) aggregate_points, [7](#page-6-0) bike_accidents, [8](#page-7-0) build_graph, [9](#page-8-0) build_graph_directed, [10](#page-9-0) build_quadtree, [11](#page-10-0) bw_cv_likelihood_calc, [17](#page-16-0) bw_cv_likelihood_calc.mc, [20](#page-19-0) bw_cv_likelihood_calc_tkde, [22](#page-21-0) bw_cvl_calc, [12](#page-11-0) bw_cvl_calc.mc, [14](#page-13-0) bw_tnkde_cv_likelihood_calc, [23](#page-22-0) bw_tnkde_cv_likelihood_calc.mc, [26](#page-25-0) calc_isochrones, [30](#page-29-0) closest_points, [32](#page-31-0) cosine_kernel, [32](#page-31-0) cross_gfunc_cpp, [33](#page-32-0) cross_kfunc_cpp, [38](#page-37-0) cross_kfunctions, [34](#page-33-0) cross_kfunctions.mc, [36](#page-35-0) epanechnikov_kernel, [38](#page-37-0) esc_kernel_loo_nkde, [39](#page-38-0) esc_kernel_loo_tnkde, [39](#page-38-0) esd_kernel_loo_nkde, [40](#page-39-0) esd_kernel_loo_tnkde, [41](#page-40-0)

gaussian_kernel, [41](#page-40-0) gaussian_kernel_scaled, [42](#page-41-0) gfunc_cpp, [42](#page-41-0)

graph_checking, [43](#page-42-0) k_nt_functions, [48](#page-47-0) k_nt_functions.mc, [51](#page-50-0) kfunc_cpp, [48](#page-47-0) kfunctions, [44](#page-43-0) kfunctions.mc, [46](#page-45-0) lines_center, [53](#page-52-0) lines_direction, [54](#page-53-0) lines_extremities, [54](#page-53-0) lines_points_along, [55](#page-54-0) lixelize_lines, [55](#page-54-0) lixelize_lines.mc, [56](#page-55-0) main_network_mtl, [57](#page-56-0) mtl_libraries, [58](#page-57-0) mtl_network, [58](#page-57-0) mtl_theatres, [59](#page-58-0) network_knn, [59](#page-58-0) network_knn.mc, [61](#page-60-0) network_listw, [62](#page-61-0) network_listw.mc, [64](#page-63-0) nkde, [66](#page-65-0) nkde.mc, [70](#page-69-0) nkde_get_loo_values, [72](#page-71-0) quartic_kernel, [73](#page-72-0) simple_lines, [74](#page-73-0) simplify_network, [74](#page-73-0) small_mtl_network, [76](#page-75-0) spatial_index, [76](#page-75-0) spatial_request, [77](#page-76-0) split_graph_components, [77](#page-76-0) split_lines_at_vertex, [78](#page-77-0) spNetwork-package, [4](#page-3-0)

tkde, [79](#page-78-0)

st_bbox_by_feature, [79](#page-78-0)

96 **INDEX**

tnkde , [80](#page-79-0) tnkde.mc , [84](#page-83-0) tnkde_get_loo_values , [87](#page-86-0) tnkde_get_loo_values2 , [88](#page-87-0) tnkde_worker_bw_sel , [89](#page-88-0) triangle_kernel , [91](#page-90-0) tricube_kernel , [92](#page-91-0) triweight_kernel , [92](#page-91-0)

uniform_kernel , [93](#page-92-0)

worker_adaptive_bw_tnkde , [93](#page-92-0)