
Package: portsort (via r-universe)
March 25, 2025

Type Package

Date 2018-09-12

Title Factor-Based Portfolio Sorts

Version 0.1.0

Author Alex Dickerson [aut,cre], Jonathan Spohnholtz [aut,cre]

Maintainer Alex Dickerson <a.dickerson@warwick.ac.uk>

Description Designed to aid both academic researchers and asset
managers in conducting factor based portfolio sorts. Provides
functionality to sort assets into portfolios for up to three
factors via a conditional or unconditional sorting procedure.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends xts, zoo, R (>= 2.10)

Suggests PortfolioAnalytics, PerformanceAnalytics, knitr

VignetteBuilder knitr

Imports stats

NeedsCompilation no

Date/Publication 2018-09-30 15:50:03 UTC

Additional_repositories https://cranhaven.r-universe.dev

Repository https://cranhaven.r-universe.dev

RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev

RemoteRef package/portsort

RemoteSha 9374eec3413be2b83be236fe889e5ef0589bc77d

RemoteSubdir portsort

1

https://cranhaven.r-universe.dev

2 conditional.sort

Contents

conditional.sort . 2
Factors . 4
portfolio.frequency . 4
portfolio.mean.size . 5
portfolio.turnover . 6
unconditional.sort . 8

Index 10

conditional.sort Conditional Portfolio Sort

Description

Calculates out-of-sample mean sub-portfolio returns and the composition of each sub-portfolio us-
ing the conditional portfolio sorting method.

Usage

conditional.sort(Fa,Fb=NULL,Fc=NULL,R.Forward,dimA,dimB=NULL,dimC=NULL,type = 7)

Arguments

Fa xts-object containing data for the first dimension of sort

Fb xts-object containing data for the second dimension of sort (optional)

Fc xts-object containing data for the third dimension of sort (optional)

R.Forward xts-object containing forward returns

dimA vector of break points between 0 and 1

dimB vector of break points between 0 and 1 (optional)

dimC vector of break points between 0 and 1 (optional)

type pass-through parameter to the quantile function

Details

The conditional sort function sorts assets based on each factor (Fa to Fc) from low to high in a
dependent fashion at each time t. Based on the sorted assets in each sub-portfolio at time t, mean
out-of-sample sub-portfolio returns are computed for time t+1. After each dimension of sort, the
subsequent sort is done only within each prior sorted sub-portfolio. Hence, the first factor that is
sorted on yields greater influence on the overall sorting procedure. The function outputs out-of-
sample returns for each sub-portfolio in columns and a list of the sub-portfolio constituents at each
rebalancing point.

conditional.sort 3

Value

returns Out-of-sample sub-portfolio returns

portfolio List of the sub-portfolio constituents over time

Note

The function implicitly handles NA/NaN or Inf values at each rebalancing point (at time t) by ex-
cluding them from the quantile function. Furthermore, if there are any NA, NaN or Inf values in
the R.Forward object when computing out-of-sample returns, these are also excluded. The function
outputs returns in columns. For example, if a double sort is conducted with both Fa and Fb in-
cluding 3 breakpoints (a 3v3) sort, column 1 will contain out-of-sample returns for the ’Low-Low’
sub-portfolio, column 4 will contain out-of-sample returns for the ’Mid-Low’ sub-portfolio whilst
column 9 will contain the ’High-High’ sub-portfolio returns.

Author(s)

Jonathan Spohnholtz and Alexander Dickerson

Examples

Load the included data
library(portsort)
data(Factors)

Specifiy the sort dimension - in this case, a double sort on lagged returns and Bitcoin volumes
with 4 breakpoints (a 4v4 sort)
dimA = c(0,0.25,0.5,0.75,1)
dimB = c(0,0.25,0.5,0.75,1)

Specify the factors for the double sort
Lagged returns, lagged volumes are stored in the Factors list

R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]

Subset the data from late 2017
R.Forward = R.Forward["2017-12-01/"]
R.Lag = R.Lag["2017-11-30/2018-09-05"]
V.Lag = V.Lag["2017-11-30/2018-09-05"]

Fa = R.Lag
Fb = V.Lag

Conduct a conditional sort
sort.output <- conditional.sort(Fa,Fb,Fc=NULL,R.Forward = R.Forward,dimA = dimA,dimB = dimB)

4 portfolio.frequency

Factors Cryptocurrency Returns and Volume Data

Description

The data set includes lagged log returns, lagged volume denominated in Bitcoin and forward log
returns aggregated every 24-hours for a cross-section of 26 cryptocurrency pairs from the 1st Jan-
uary 2017 to 9th September 2018. The data was downloaded from CryptoCompare - a free API
accessible at https://min-api.cryptocompare.com

Usage

data("Factors")

Format

A list of three xts objects including lagged returns (R.Lag), lagged volumes (V.Lag) and forward
returns (R.Forward).

Source

https://min-api.cryptocompare.com

Examples

Load data
data(Factors)
Unlist the data
R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]
head(V.Lag[1:5,1:5])

portfolio.frequency Calculate Sub-Portfolio Concentration

Description

Computes the frequency that an asset appears in each sub-portfolio based on its rank.

Usage

portfolio.frequency(sort.output, rank)

Arguments

sort.output object returned from either the conditional.sort or unconditional.sort function.

rank input the rank of the security you would like to return the frequency for.

https://min-api.cryptocompare.com
https://min-api.cryptocompare.com

portfolio.mean.size 5

Details

Returns the frequency that the security appears in each sub-portfolio based on the rank input.

Author(s)

Alexander Dickerson and Jonathan Spohnholtz

Examples

Load the included data
library(portsort)
data(Factors)

Specifiy the sort dimension - in this case, a double-sort on lagged returns and Bitcoin volumes
dimA = 0:3/3
dimB = 0:3/3

Specify the factors
Lagged returns, lagged volumes are stored in the Factors list
R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]

Subset the data from late 2017
R.Forward = R.Forward["2017-12-01/"]
R.Lag = R.Lag["2017-11-30/2018-09-05"]
V.Lag = V.Lag["2017-11-30/2018-09-05"]

Fa = R.Lag
Fb = V.Lag

Conduct an unconditional sort (in this case) or a conditional sort
sort.output = unconditional.sort(Fa = Fa, Fb = Fb , R.Forward = R.Forward, dimA = dimA, dimB = dimB)

We want to see which security appeared the most in each sub-portfolio,
i.e the secruity with a rank of 1.

rank = 1
portfolio.frequency(sort.output,rank)

portfolio.mean.size Calculate Mean Sub-Portfolio Size

Description

Primarily used in the case of an unconditional sort - this function computes the average number of
securities in each sub-portfolio across time.

6 portfolio.turnover

Usage

portfolio.mean.size(sort.output)

Arguments

sort.output object returned from either the conditional.sort or unconditional.sort function.

Author(s)

Alexander Dickerson and Jonathan Spohnholtz

Examples

Load the included data
library(portsort)
data(Factors)

Specifiy the sort dimension - in this case, a double-sort on lagged returns and Bitcoin volumes
dimA = 0:3/3
dimB = 0:3/3

Specify the factors
Lagged returns, lagged volumes are stored in the Factors list
R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]

Subset the data from late 2017
R.Forward = R.Forward["2017-12-01/"]
R.Lag = R.Lag["2017-11-30/2018-09-05"]
V.Lag = V.Lag["2017-11-30/2018-09-05"]

Fa = R.Lag
Fb = V.Lag

Conduct an unconditional sort (in this case) or a conditional sort
sort.output = unconditional.sort(Fa = Fa, Fb = Fb , R.Forward = R.Forward, dimA = dimA, dimB = dimB)

We want to compute the average size of each sub-portfolio

portfolio.mean.size(sort.output)

portfolio.turnover Calculate Sub-Portfolio Turnover

Description

Calculates sub-portfolio turnover between each rebalancing period.

Usage

portfolio.turnover(sort.output)

portfolio.turnover 7

Arguments

sort.output object returned from either the conditional.sort or unconditional.sort function.

Details

This function calculates the turnover within each sub-portfolio over time and returns a list contain-
ing the turnover values and the mean turnover across time.

Value

Turnover xts object of turnovers for each rebalancing point.

Mean Turnover mean turnover for each sub-portfolio averaged over time.

Author(s)

Jonathan Spohnholtz and Alexander Dickerson

Examples

Load the included data
library(portsort)
data(Factors)

Specifiy the sort dimension - in this case, a double-sort on lagged returns and Bitcoin volumes
dimA = 0:3/3
dimB = 0:3/3

Specify the factors
Lagged returns, lagged volumes are stored in the Factors list
R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]

Subset the data from late 2017
R.Forward = R.Forward["2017-12-01/"]
R.Lag = R.Lag["2017-11-30/2018-09-05"]
V.Lag = V.Lag["2017-11-30/2018-09-05"]

Fa = R.Lag
Fb = V.Lag

Conduct an unconditional sort (in this case) or a conditional sort
sort.output = unconditional.sort(Fa = Fa, Fb = Fb , R.Forward = R.Forward, dimA = dimA, dimB = dimB)

Compute Turnover by passing the sort.output object to the turnover function
sort.turnover = portfolio.turnover(sort.output)

8 unconditional.sort

unconditional.sort Unconditional Portfolio Sort

Description

Calculates out-of-sample mean sub-portfolio returns and the composition of each sub-portfolio us-
ing the unconditional portfolio sorting method.

Usage

unconditional.sort(Fa,Fb=NULL,Fc=NULL,R.Forward,dimA,dimB=NULL,dimC=NULL,type = 7)

Arguments

Fa xts-object containing data for the first dimension of sort

Fb xts-object containing data for the second dimension of sort (optional)

Fc xts-object containing data for the third dimension of sort (optional)

R.Forward xts-object containing forward returns

dimA vector of break points between 0 and 1

dimB vector of break points between 0 and 1 (optional)

dimC vector of break points between 0 and 1 (optional)

type pass-through parameter to the quantile function

Details

The unconditional sort function sorts assets based on each factor (Fa to Fc) from low to high inde-
pendently at each time t and forms sub-portfolios based on the intersection between them. Based on
the sorted assets in each sub-portfolio at time t, mean out-of-sample sub-portfolio returns are com-
puted for time t+1. The function outputs out-of-sample returns for each sub-portfolio in columns
and a list of the sub-portfolio constituents at each rebalancing point.

Value

returns Out-of-sample sub-portfolio returns

portfolio List of the sub-portfolio constituents over time

Note

The function implicitly handles NA/NaN or Inf values at each rebalancing point (at time t) by ex-
cluding them from the quantile function. Furthermore, if there are any NA, NaN or Inf values in
the R.Forward object when computing out-of-sample returns, these are also excluded. The function
outputs returns in columns. For example, if a double sort is conducted with both Fa and Fb in-
cluding 3 breakpoints (a 3v3) sort, column 1 will contain out-of-sample returns for the ’Low-Low’
sub-portfolio, column 4 will contain out-of-sample returns for the ’Mid-Low’ sub-portfolio whilst
column 9 will contain the ’High-High’ sub-portfolio returns.

unconditional.sort 9

Author(s)

Jonathan Spohnholtz and Alexander Dickerson

Examples

Load the included data
library(portsort)
data(Factors)

Specifiy the sort dimension - in this case, a double sort on lagged returns and Bitcoin volumes
with 4 breakpoints (a 4v4 sort)
dimA = c(0,0.25,0.5,0.75,1)
dimB = c(0,0.25,0.5,0.75,1)

Specify the factors for the double sort
Lagged returns, lagged volumes are stored in the Factors list

R.Forward = Factors[[1]]; R.Lag = Factors[[2]]; V.Lag = Factors[[3]]

Subset the data from late 2017
R.Forward = R.Forward["2017-12-01/"]
R.Lag = R.Lag["2017-11-30/2018-09-05"]
V.Lag = V.Lag["2017-11-30/2018-09-05"]

Fa = R.Lag
Fb = V.Lag

Conduct an unconditional sort
sort.output <- conditional.sort(Fa,Fb,Fc=NULL,R.Forward = R.Forward,dimA = dimA,dimB = dimB)

Index

∗ datasets
Factors, 4

conditional.sort, 2

Factors, 4

portfolio.frequency, 4
portfolio.mean.size, 5
portfolio.turnover, 6

quantile, 2, 3, 8

unconditional.sort, 8

10

	conditional.sort
	Factors
	portfolio.frequency
	portfolio.mean.size
	portfolio.turnover
	unconditional.sort
	Index

