
Package: optpart (via r-universe)
January 10, 2025

Version 3.0-3

Title Optimal Partitioning of Similarity Relations

Author David W. Roberts <droberts@montana.edu>

Maintainer David W. Roberts <droberts@montana.edu>

Depends cluster, labdsv, MASS, plotrix

Suggests tree

Description Contains a set of algorithms for creating partitions and
coverings of objects largely based on operations on
(dis)similarity relations (or matrices). There are several
iterative re-assignment algorithms optimizing different
goodness-of-clustering criteria. In addition, there are
covering algorithms 'clique' which derives maximal cliques, and
'maxpact' which creates a covering of maximally compact sets.
Graphical analyses and conversion routines are also included.

License GPL (>= 2)

URL http://ecology.msu.montana.edu/labdsv/R

NeedsCompilation yes

Date/Publication 2020-01-19 17:10:02 UTC

Additional_repositories https://cranhaven.r-universe.dev

Repository https://cranhaven.r-universe.dev

RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev

RemoteRef package/optpart

RemoteSha 01a1653eae63c23dc7b119c99215b466cccbb9cb

RemoteSubdir optpart

Contents
archi . 2
bestfit . 3
bestopt . 4

1

http://ecology.msu.montana.edu/labdsv/R
https://cranhaven.r-universe.dev

2 archi

classmatch . 6
clique . 7
clique.test . 9
clustering . 10
compare . 10
confus . 11
consider . 13
disdiam . 14
extract . 15
flexbeta . 16
gensilwidth . 17
lambda . 19
maxsimset . 20
mergeclust . 21
murdoch . 22
neighbor . 24
optimclass . 25
optindval . 26
optpart . 28
optsil . 30
opttdev . 31
partana . 32
partition . 34
phi . 35
refine . 36
reordclust . 37
shoshsite . 38
shoshveg . 39
silhouette.partana . 40
slice . 42
stride . 43
tabdev . 44
testpart . 45
typal . 46

Index 48

archi Archipelago Analysis

Description

Archipelago analysis finds connected clusters in a dissimilarity matrix. Samples in the same cluster
are at most alpha dissimilar to at least one other sample in the cluster, and are more than alpha
dissimilar to all samples in all other clusters. The solution is equivalent to slicing a nearest neighbor
cluster analysis at alpha, but does not require (or produce) a hierarchical structure.

bestfit 3

Usage

archi(dist,alpha)

Arguments

dist an object of class ‘dist’ from dist, vegdist, or dsvdis

alpha the dissimilarity threshold to establish the relationship

Details

Archipelago analysis is a topological, as opposed to metric space, cluster routine that returns con-
nected clusters. Every sample in a cluster is connected by a path with step lengths of at most alpha
dissimilarity to every other sample in the cluster, and is more than alpha dissimilar to all other
samples in all other clusters.

Value

produces an object of class ‘clustering’, a list with a vector ‘clustering’ of cluster memberships

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg) # produces a vegetation dataframe
dis.bc <- dsvdis(shoshveg,'bray/curtis')

produces a Bray/Curtis dissimilarity matrix
arc.50 <- archi(dis.bc,0.5) # clusters at 0.5 dissimilarity
table(arc.50$clustering)

bestfit Identify the Goodness-of-Fit of Cluster Members

Description

Sorts the members of clusters by maximum similarity goodness-of-fit

Usage

bestfit(x,cluster)

Arguments

x an object of class ‘partana’ or ‘silhouette’

cluster a specific cluster number

4 bestopt

Details

Simply finds all members of a specific cluster and lists them in order of (1) mean similarity to their
cluster (if x is an object of class ‘partana’) or silhouette width (if x is an object of class ‘silhouette’
as produced by functions in package ‘cluster’)

Value

returns a data.frame with cluster members in column ‘ID’ and goodness-of-fit in column ‘fit’

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/

See Also

typal

Examples

data(shoshveg) # returns vegetation matrix
dis.bc <- dsvdis(shoshveg,'bray') # Bray/Curtis dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # 5 cluster partition
print(class(opt.5))
fit <- bestfit(opt.5,1) # goodness-of-fit for cluster 1
sil.5 <- silhouette(opt.5,dis.bc) # calculate silhouette widths
fit2 <- bestfit(sil.5,1) # goodness-of-fit for cluster 1

bestopt Best Of Set Optimal Partitions From Random Starts

Description

Produces a specified number of optpart solutions from random starts, keeping the best result of
the set

Usage

bestopt(dist,numclu,numrep,maxitr=100)

http://ecology.msu.montana.edu/labdsv/

bestopt 5

Arguments

dist an object of class ‘dist’ from dist, vegdist, or dsvdis, or a symmetric dissim-
ilarity matrix

numclu the number of clusters desired

numrep the number of random starts requested

maxitr the maximum number of iterations per replicate

Details

calls function optpart with an random initial assignment of items to clusters ‘numitr’ times, keep-
ing the best result (highest within/among ratio observed). See optpart for more details.

Value

an object of class partana, with components:

ptc the mean similarity of each item to each cluster

ctc the mean similarity of each cluster to other clusters

musubx the membership of each item in each cluster

clustering the best ‘crisp’ partition from musubx

ratio the within-cluster/among-cluster similarity ratio achieved at each iteration of the
selected result.

Note

This is a simple wrapper function to automate independent random starts of function optpart.

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

optpart, partana, pam

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
x <- bestopt(dis.bc,5,10)
summary(x)
Not run: plot(x)

6 classmatch

classmatch Classification Matching and Differencing

Description

Compares two classifications by cross-tabulating the assignment of objects to classes, and (option-
ally) produces a new classification to reflect the congruences and differences

Usage

classmatch(x,y,type='full')

Arguments

x an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying mem-
bership of objects in classes

y an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying mem-
bership of objects in classes

type a switch, either ‘full’ or ‘direct’, to control the parameters of the algorithm

Details

classmatch first calculates a cross-tabulation of the two classifications. Then, if ‘type=="full"’,
the default, it finds all cases of agreement in order of number of objects. Objects are assigned to
new clusters to reflect that order. It’s important to note that a single class may be partitioned into
several new classes, and the the number of new classes produced may be higher than either of the
classifications considered.

If ‘type=="direct"’ classmatch assumes a one-to-one relation between the two classifications com-
pared. Classmatch finds the largest case of agreement, and assigns that match to class 1. It then
zeros out the rows and columns corresponding to those classes, and iterates.

Value

A list with components:

tab the cross-tabulation analyzed

pairs the x and y values considered matched in order of solution

partial a cumulative fraction of agreement as a function of number of clusters

ord a table showing the order of new clusters

combo a new vector of assignment of objects to clusters, only produced if ‘type=="full"’

Author(s)

David W. Roberts <droberts@montana.edu>

clique 7

References

http://ecology.msu.montana.edu/labdsv/R

See Also

partition, optpart, slice

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
pam.5 <- pam(dis.bc,5)
classmatch(opt.5,pam.5)

clique Maximal Clique Analysis

Description

Maximal clique analysis produces the set of maximal cliques of a dissimilarity or distance ma-
trix. Maximal cliques are sets where every member of the set is <= alpha-dissimilar to every other
member.

Usage

clique(dist,alphac,minsize=1,mult=100)
S3 method for class 'clique'
summary(object, ...)
S3 method for class 'clique'
plot(x, panel = 'all', ...)

Arguments

dist an object of class ‘dist’ from dist, vegdist, or dsvdis

alphac the dissimilarity threshold to establish the relationship

minsize the minimum size clique to list in the results

mult scratch space multiplier to control stack size (see below)

object an object of class ‘clique’

... ancillary arguments to summary or plot

x an object of class ‘clique’

panel an integer switch to indicate which panel to plot

http://ecology.msu.montana.edu/labdsv/R

8 clique

Details

Maximal clique analysis produces a covering, as opposed to a partition, i.e. objects can belong to
more than one clique, and every object belongs to at least one clique. The maximal clique solu-
tion is solved for by symbolic computation, as opposed to numerical computation, and produces
a unique solution. The number of cliques produced cannot be known beforehand, and can signif-
icantly exceed the number of objects. The ‘mult’ argument controls the size of the stack to hold
intermediate terms in the equation as the solution proceeds. At each iteration, the algorithm sim-
plifies the equation to the extent possible, and recovers space used to hold terms that have been
eliminated. Nonetheless, it is possible for the equation to grow quite large at intermediate steps.
The initial value of ‘mult=100’ sets the stack to 100 times the number of objects in the dissimilar-
ity/distance matrix. If the memory allocated is exceeded, the output is set to NULL, and a message
is printed to increase the ‘mult’ argument to a higher value.

Value

produces a list with elements:

alphac the threshold value used to establish the cliques

musubx a matrix of object membership in each of the maximal cliques

member a list of members of each clique

Note

WARNING. The run time of maximal clique analysis is approximately 2n + n for n objects. The
number of cliques generated, and the run time, is sensitive to ‘alpha’, as values of ‘alpha’ close to
the mean dissimilarity of the matrix are likely to produce the most cliques and longest run time. A
solution for 1200 objects once took approximately 20 CPU days on a SparcStation. The example
shown below (100 objects) runs in a few seconds on a modern computer.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

Examples

data(shoshveg) # produces a vegetation dataframe
dis.bc <- dsvdis(shoshveg,'bray/curtis')

produces a Bray/Curtis dissimilarity matrix
cli.50 <- clique(dis.bc,0.5) # clusters at 0.5 dissimilarity, likely

to run for a few seconds in most PCs
summary(cli.50)

http://ecology.msu.montana.edu/labdsv/R

clique.test 9

clique.test Clique Test

Description

The ‘clique.test’ function analyzes within-clique variability in attributes of objects other than those
used to calculate the similarity relation. If the cliques exhibit a narrower range of values than
expected at random it may be that the variable analyzed has an underlying role in determining the
attributes on which the similarity is calculated.

Usage

clique.test(cliq,env,minsize=2,plotit=FALSE)

Arguments

cliq an object of class ‘clique’

env a continuous environmental variable to test

minsize the minimum size clique to test for range

plotit a switch to control plotting each clique individually

Value

Produces a vector of probabilities, one for each clique that expresses the probability of obtaining a
range of ‘env’ as small as observed. Also produces a plot of the sorted probabilities on the current
device.

Note

The ‘clique.test’ function actually calls the envrtest function once for each clique and stores the
associated probability as determined by envrtest

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

clique, mss.test, envrtest

Examples

data(shoshveg)
data(shoshsite)
dis.bc <- dsvdis(shoshveg,'bray')
Not run: cli.60 <- clique(dis.bc,0.60) # will run for several
Not run: print(clique.test(cli.60,shoshsite$swb)) # minutes

10 compare

clustering Clustering Object

Description

A clustering object is a list with a component called ‘clustering’ which is an integer vector of length
n where n is the number of elements in a classification.

Details

The clustering object is defined simply to allow a cleaner interface to functions in package ‘cluster’.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

compare Compare Species Constancy for Specified Clusters

Description

Extracts specified columns from a constancy table (see const) and identifies species which occur
in one of the two clusters (potential diagnostic species) or in both.

Usage

compare(const,left,right,thresh=0.2)

Arguments

const a constancy table produced by function const

left a numeric cluster

right a cluster number

thresh a minimum differential abundance to list in the table

Details

compare extracts two columns (left and right) from a constancy table produced by const, and
calculates the pairwise differences. Differences greater than the specified threshold appear in the
set ‘left’; negative differences less then minus one times the threshold appear in the set ‘right’, and
species which occur in both columns but with an absolute value of difference less than the threshold
appear in set ‘both’.

http://ecology.msu.montana.edu/labdsv/R

confus 11

Value

a list with elements

left a data.frame of species diagnostic of set ‘left’

right a data.frame of species diagnostic of set ‘right’

both species occuring in both sets and diagnostic of neither

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

Examples

data(shoshveg) # returns vegetation data set
data(shoshsite) # returns site data
elev.clust <- as.numeric(factor(cut(shoshsite$elevation,5)))

5 elevation bands
elev.const <- const(shoshveg,elev.clust)
compare(elev.const,1,2) # identify diagnostic species

confus (Fuzzy) Confusion Matrix

Description

A confusion matrix is a cross-tabulation of actual class membership with memberships predicted
by a discriminant function, classification tree, or other predictive model. A fuzzy confusion matrix
is a confusion matrix that corrects for ‘near misses’ in prediction by comparing the similarity of the
predicted type to the actual type and giving credit for the similarity.

Usage

confus(clustering,model,diss=NULL)

Arguments

clustering an object of class ‘clustering’ or a vector of (integer or factor) class membership
values

model a predictive model of class ‘tree’ or ‘randomForest’

diss optionally, a dissimilarity object of class ‘dist’ from ‘dist’, ‘dsvdis’, or ‘vegdist’

http://ecology.msu.montana.edu/labdsv/R

12 confus

Details

Cross-classifies each sample by actual class membership and predicted membership, computing
overall accuracy, and the Kappa statistic of agreement. If a dissimilarity matrix is passed, calculates
a fuzzy confusion matrix. In this case, correct predictions are assigned values of 1.0, and other
predictions are given the value of the similarity of the two types an placed on the diagonal. The
dissimilarity of the two types is added off the diagonal as fuzzy error.

Value

produces a list with elements

matrix the (fuzzy) cross-tabulation matrix as a data.frame

correct the fraction of (fuzzily) correctly predicted samples

kappa the value of the Kappa statistic

legend the text legend for the cross-tabulation matrix

Note

Confusion matrices are commonly computed in remote sensing applications, but are equally suited
to the evaluation of any predictive methods of class membership or factors.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References

http://ecology.msu.montana.edu/labdsv/R

Examples

data(shoshveg) # returns a data frame of vegetation data
data(shoshsite) # returns a data frame of site data
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
library(tree)
mod <- tree(factor(opt.5$clustering)~ elevation+slope+av,

data=shoshsite)
confus(opt.5,mod)
confus(opt.5,mod,dis.bc)

http://ecology.msu.montana.edu/labdsv/R
http://ecology.msu.montana.edu/labdsv/R

consider 13

consider Recommendations for Possible Merging of Clusters

Description

Presents an ordered list of possible cluster combinations to consider for merging to simplify a
classification.

Usage

consider(part)

Arguments

part an object of class ‘partana’ from functions partana, optpart or bestopt

Details

Simply sorts the cluster-to-cluster mean similarity matrix of a ‘partana’ object into a list sorted by
mean similarity.

Value

a data.frame with three elements:

row the current cluster number

col the cluster to which it is most similar

vals the mean similarity of the two clusters

Note

The listed combinations are not suggested to be optimal by any specific criterion. In fact, if the ‘par-
tana’ object was generated by optpart or bestopt it is known that the suggested combinations are
sub-optimal. Nevertheless, sometimes it is desirable to simplify a classification for other reasons.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

optpart, bestopt

http://ecology.msu.montana.edu/labdsv/R

14 disdiam

Examples

data(shoshveg) # returns a vegetation data.frame
dis.bc <- dsvdis(shoshveg,'bray') # calculates a Bray/Curtis

dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # generates a 5 cluster partition
consider(opt.5) # recommends possible clusters to merge

disdiam Dissimilarity Diameters of a Partition

Description

Calculates the diameter (maximum within-cluster dissimilarity) of all clusters in a partition, as well
as the average diameter across all clusters.

Usage

disdiam(x,dist,digits)
S3 method for class 'stride'
disdiam(x,dist,digits=3)
S3 method for class 'disdiam'
print(x, ...)

Arguments

x a vector of integers or an object of class ‘clustering’, ‘partition’, ‘partana’, or
‘stride’

dist an object of class ‘dist’ from dist, dsvdis, or vegdist

digits the number of significant digits reported in the output

... ancillary arguments to the print function

Details

disdiam is a cluster validation routine, and calculates the diameter (maximum within-cluster dis-
similarity) of each cluster, as well as the average diameter of across all clusters of size greater than
one.

Value

A list with components:

diameters a data.frame with clusters as rows, and cluster ID, cluster size, and diameter as
cols

mean the weighted mean diameter of clusters of size greater than one. The mean is
weighted for cluster size.

extract 15

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
disdiam(opt.5,dis.bc)

extract Extract A Specific Cluster Solution From A Stride

Description

Extracts a specified cluster solution from an object of class ‘stride’. The desired solution is specified
by the number of clusters.

Usage

S3 method for class 'stride'
extract(stride,k)

Arguments

stride an object of class ‘stride’ from function stride

k the number of clusters desired

Details

A stride object consists of a list with a data.frame of cluster solutions for varying numbers of clus-
ters. Extract simply selects one column of this data.frame (specified by number of clusters desired,
not column number) and returns that solution as an object of class ‘clustering’.

Value

an object of class ‘clustering’.

Author(s)

David W. Roberts <droberts@montana.edu>

16 flexbeta

Examples

data(shoshveg) # get vegetation data
dis.bc <- dsvdis(shoshveg,'bray') # calculate dissimilarity

matrix
avg.hcl <- hclust(dis.bc,'average') # average linkage cluster

analysis
avg.2.10 <- stride(2:10,avg.hcl) # compute stride
res <- extract(avg.2.10,8) # extract 8-cluster solution

flexbeta Calculate a Flexible-Beta Dendrogram

Description

Calculates Lance and Williams flexible-beta dendrogram with simplified argument

Usage

flexbeta(dis,beta=-0.25,alpha=(1-beta)/2,gamma=0)

Arguments

dis a distance or dissimilarity object of class ‘dist’

beta the Beta coefficient

alpha the Alpha coefficients (assumed equal)

gamma the gamma coefficient

Details

Calculates a flexible-beta dendrogram from a dissimilarity matrix specifying minimum parameters.
The routine is simply a wrapper for the agnes function from package cluster with suitable arguments
specified to achieve desired results. Ecologist in particular (but many others) find beta = -0.25 a
good default.

Value

An object of class ‘hclust’ for plotting and analysis like other hclust objects, as compared to objects
of class ‘agnes’ as generated by the agnes function in package cluster.

Author(s)

for the agnes function, Peter Rousseeuw for the original Fortran, Martin Maechler for the R code

for this function, David W. Roberts <droberts@montana.edu>

References

Lance, G.N., and W.T. Williams (1966). A General Theory of Classifactory Sorting Strategies, I.
Hierarchical Systems. Computer J. *9*, 373-380.

gensilwidth 17

See Also

agnes

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
flexb <- flexbeta(dis.bc)

gensilwidth Generalized Silhouette Width

Description

Calculates mean cluster silhouette widths using a generalized mean.

Usage

gensilwidth(clust, dist, p=1)

Arguments

clust an integer vector of cluster memberships or a classification object of class ‘clus-
tering’

dist an object of class ‘dist’

p the scaling parameter of the analysis

Details

gensilwidth calculates mean cluster silhouette widths using a generalized mean. The scaling param-
eter can be set between [−∞,∞] where values less than one emphasize connectivity, and values
greater than one emphasize compactedness. Individual sample unit silhouette widths are still cal-
culated as si = (bi − ai)/max(bi, ai) where ai is the mean dissimilarity of a sample unit to the
cluster to which it is assigned, and bi is the mean dissimilarity to the nearest neighbor cluster. Given
si for all members of a cluster, the generalized mean is calculated as

s̄ =

(
1

n

n∑
k=1

spk

)1/p

Exceptions exist for specific values:

for p=0

si =

(
n∏

k=1

sk

)1/n

18 gensilwidth

for p=−∞

si =
n

min
k=1

sk

for p=∞

si =
n

max
k=1

sk

p = −1 = harmonic mean, p = 0 = geometric mean, and p = 1 = arithmetic mean.

Value

an object of class ‘silhouette’, a list with components

cluster the assigned cluster for each sample unit

neighbor the identity of the nearest neighbor cluster for each sample unit

sil_width the silhouette width for each sample unit

Author(s)

Attila Lengyel and Zoltan Botta-Dukat wrote the algorithm

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References

Lengyel, A. and Z. Botta-Dukat. 2019. Silhouette width using generalized mean: A flexible method
for assessing clustering efficiency. Ecology and Evolution https://doi.org/10.1002/ece3.5774

See Also

silhouette

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
gensilwidth(opt.5,dis.bc)

http://ecology.msu.montana.edu/labdsv/R

lambda 19

lambda Goodman- Kruskal Lambda Index of Classification Association

Description

Compares two classifications by calculating the Goodman-Kruskal Index of association

Usage

lambda(x,y,digits=5)

Arguments

x an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying mem-
bership of objects in classes with names attribute

y an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying mem-
bership of objects in classes with names attribute

digits the number of digits of the statsitic to report

Details

lambda calculates the Goodman-Kruskal index of association:∑
i maxj(nij)+

∑
j maxi(nij)−max(ni,)−max(n.j)

2∗
∑

i

∑
j nij−max(ni,)−max(n.j)

Value

Prints a cross-tabulated table and the lambda statistic, and (invisibly) returns the lambda statistic

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

partition, optpart, slice,classmatch

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
pam.5 <- pam(dis.bc,5)
lambda(opt.5,pam.5)

http://ecology.msu.montana.edu/labdsv/R

20 maxsimset

maxsimset Maximally Similar Sets Analysis

Description

Maximally similar sets is an approach to deriving relatively homogeneous subsets of objects as
determined by similarity of the composition of the objects. Maximally similar sets are a covering,
as opposed to a partition, of objects. The sets so derived can be tested against random sets of
the same size to determine whether a vector of independent data exhibits an improbably restricted
distribution within the sets.

Usage

maxsimset(dist,size=NULL,alphac=NULL,mean=FALSE)
mss.test(mss, env, panel = 'all', main = deparse(substitute(env)),

...)
S3 method for class 'mss'
plot(x, ...)
S3 method for class 'mss'
getsets(mss)

Arguments

dist a dist object from dist, dsvdis, or vegdist

size the size of desired sets

alphac the alpha-cut to specify maximum dissimilarity for inclusion in a set

mean if mean is FALSE (the default), the algorithm uses a furthest neighbor criterion;
if mean is TRUE, it uses a mean similarity criterion

mss an object of class ‘mss’

env a quantitative environmental variable for analysis

main a title for the plot of mss.test

panel an integer switch to indicate which panel to draw

x an object of class ‘mss’ from maxsimset

... ancillary arguments for ‘plot’

Details

maxsimset starts with each sample as a seed, and adds the most similar plot to the set. Plots are
added in turn to the set (up to the size specified, or to the maximum dissimilarity specified) in order
of maximum similarity. If mean is FALSE, the sample most similar to set is the sample with the
max-min similarity, that is, the sample whose minimum similarity to the set if highest, equivalent
to furthest-neighbor or complete-linkage in cluster analysis. If mean is TRUE, the sample most
similar to a set is the sample with highest mean similarity to the set. Once the sets are determined
for each seed, the list is examined for duplicate sets, which are deleted, to return the list of unique
sets.

mergeclust 21

If ‘alphac’ is specified, sets are grown to maximum size, or to maximum dissimilarity as specified
by alphac, whichever is smaller.

The ‘mss.test’ function analyzes within-set variability in attributes of the objects other than those
used to calculate the similarity relation. If maximally similar sets exhibit a narrower range of values
than expected at random it may be that the variable analyzed has an underlying role in determining
the attributes on which the similarity is calculated. The function ‘plot’ plots the sorted within-set
range of values in red, and the sorted range of values of random sets of the same size in black. This
followed by a boxplot of within-set values for the random replicates versus the observed sets, and
calculates a Wilcoxon rank sum test of the difference.

‘getsets’ expands and pulls out the maximally similar sets as a list of logical membership vectors
for use in other analyses.

Value

an object of class ‘mss’, a list with elements:

musubx a matrix of sample membership in the sets where membership is given by the
similarity with which a sample joined the set

member a list of set members in the order they were added to the set

numset the number of unique sets derived

size the number of members in each set

distname the name of the dissimilarity/distance object employed

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
data(shoshsite)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
mss.10 <- maxsimset(dis.bc,10)
Not run: mss.test(mss.10,shoshsite$elevation)

plots graph and produces summary

mergeclust Merge Specified Clusters in a Classification

Description

Re-assigns members of one cluster to another specified cluster, reducing the number of clusters by
one.

Usage

mergeclust(clustering,from,to)

22 murdoch

Arguments

clustering a vector of (integer) cluster memberships, or an object of class‘partition’, ‘par-
tana’, or ‘clustering’

from the cluster number to be vacated

to the cluster to which members will be re-assigned

Details

The function simply renumbers members of one cluster with the number of another, but greatly sim-
plifies managing the list objects class‘partition’, ‘partana’, or ‘clustering’ and simplifes the syntax.

Value

A list object of class ‘clustering’ specifying cluster membership for every object.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

partition, partana, and clustering

Examples

data(shoshveg) # returns a vegetation data.frame
dis.bc <- dsvdis(shoshveg,'bray/curtis') # returns a Bray/Curtis

dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # five cluster partition
opt.5a <- mergeclust(opt.5,5,4) # reassigns member from cluster

5 to 4

murdoch Indicator Species Analysis by Murdoch Preference Function

Description

Calculates the indicator value of species in a single cluster or environment type using the Murdoch
Preference Function

http://ecology.msu.montana.edu/labdsv/R

murdoch 23

Usage

murdoch(comm,type,minval=0,minplt=10)
S3 method for class 'murdoch'
summary(object,pval=0.05,digits=3,...)
S3 method for class 'murdoch'
plot(x,axtype=1,pval=0.05,...)
S3 method for class 'murdoch'
print(x,digits = 5, ...)

Arguments

comm a matrix or data.frame of samples with species as columns and samples as rows
type a logical vector with values of TRUE for samples in a specific cluster or type
minval a threshold minimum abundance value to count as a presence
minplt the minimum number of presences to include a species in the calculation
object and object of class ‘murdoch’
pval the maximum probability to include a species in the summary table
digits the number of digits to report
... ancillary arguments to maintain compatibility with the generic summary func-

tion
x an object of class ‘murdoch’
axtype a switch to control scaling of the x axis in the plot. 1=number of plots in the

data set, other = number of presences in the type

Details

Calculates the indicator value of species for a specific type using the modified Murdoch statistic:

log((p/a) ∗ (n− pi)/ni)

where: p = number of samples where species is present, a = number of samples where species
is absent, n = total number of samples (p+a), pi = number of samples in type i where species is
present, ni = number of samples in type i.

Probabilities are based on the hypergeometric distribution calculation of having as many or more
presences in a type as observed.

Value

a list object of class ‘murdoch’ with components:

minplt the minimum number of presences to be included
nplots the number of plots a species occurs in
type the plot membership vector for the type
pres the number of presences for species in the type
abs the number of absences of species in the type
murdoch the Murdoch value for species in the type
pval the probability of getting such a high murdoch value

24 neighbor

Note

Indicator value analysis is a set of techniques designed to identify species of special interest in
clusters or types. The most widely used indicator species analysis was proposed by Dufrene and
Legendre (1997), and is included in package ‘labdsv’ as indval. murdoch differs significantly from
indval in assumption and objective, seeking to identify species that have improbable occurrences in
types, regardless of their relative frequency in the type

Author(s)

David W. Roberts with help from Ken Aho <droberts@montana.edu> http://ecology.msu.
montana.edu/labdsv/R

See Also

indval, tabdev

Examples

data(shoshveg) # returns a vegetation dataframe
dis.bc <- dsvdis(shoshveg,'bray/curtis') # returns a dissimilarity

matrix
opt.5 <- optpart(5,dis.bc)
plot(murdoch(shoshveg,opt.5$clustering==1))

neighbor Neighbor Analysis of Partitions

Description

Calculates the nearest neighbor (least dissimilar cluster) for each item in partition to identify the
topology of the partition.

Usage

neighbor(x,all=FALSE)

Arguments

x an object of class ‘pam’ or class ‘partana’
all a logical switch to control which items are included in the calculation

Details

Each item in a partition has membership in a cluster. The nearest neighbor of an item is the cluster
to which the item is least dissimilar, other than the one to which it it belongs. If ‘all’ is TRUE,
then every item is included in the analysis. If ‘all’ is FALSE, only ‘misfits’ are included in the
calculation. If the first argument is an object of class ‘pam’, then a misfit is an item with a negative
silhouette width (see silhouette). If the first argument is an object of class ‘partana’, a misfit is
an item with lower mean dissimilarity to another cluster than to the one to which it belongs.

http://ecology.msu.montana.edu/labdsv/R
http://ecology.msu.montana.edu/labdsv/R

optimclass 25

Value

A table with clusters as rows, and neighbors as columns.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
neighbor(opt.5,all=TRUE)

optimclass Optimum Classification by Counts of Indicator Species

Description

Calculates the number of indicator species/cluster across a range of partitions

Usage

optimclass(comm, stride, pval = 0.01, counts = 2)

Arguments

comm a community matrix with sample units as rows and species as columns

stride an object of class ‘stride’from function stride

pval the minimum probability for inclusion in the list of indicators

counts the minimum number of clusters for inclusion in the list

Details

Calculates the number of indicator species/cluster and the number of clusters with at least ‘counts’
indicators, using the ϕ index to identify indicators with probabilities less than or equal to ‘pval’.
Arguably the optimal partition is the one with the most indicator species and the most clusters with
adequate indicators.

Value

A data.frame of

clusters number of clusters

sig.spc the number of species with significant indicator value

sig.clust the number of clusters with at least ‘counts’ indicator species

26 optindval

Note

The concept and first implementation were by Tichy in software package ‘Juice’, and this is a simple
port of the algorithm to R.

Author(s)

Lubomir Tichy wrote the original algorithm

David W. Roberts <droberts@montana.edu>

References

Tichy, L., M. Chytry, M. Hajek, S. Talbot, and Z. Botta-Dukat. 2010. OptimClass: Using species-
to-cluster fidelity to determine the optimal partition in classification of ecological communities. J.
Veg. Sci. 21:287-299.

See Also

indval

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.2.10 <- stride(2:20,dis.bc)
Not run: optimclass(shoshveg,opt.2.10)

optindval Optimizing Classification by Maximizing Dufrene and Legendre’s In-
dicator Value

Description

optindval is a iterative re-assignment classification algorithm that assigns samples to clusters to
maximize the sum of indicator values.

Usage

optindval(comm,clustering,maxitr=100,minsiz=5)

Arguments

comm a vegetation or other taxon table with samples as rows and taxa as columns

clustering an index of cluster membership for each sample. May be either a numeric vector
of length equal to the number of samples, or an object that inherits from class
‘cluster’

maxitr the maximum number of iterations to attempt

minsiz the minimum size cluster to consider reassigning a sample out of

optindval 27

Details

Iterative re-allocation algorithms temporarily re-assign each sample to each of the other possible
clusters and calculate a goodness-of-clustering statistic for each re-assignment. The best of all
possible re-assignments is then executed and the algorithm iterates until there are no more good
re-assignments or the maximum number of iterations is reached. In optindval, the goodness-of-
clustering statistic is the sum of Dufrene and Legendre indicator values

Value

a list of class "optindval","clustering" with components:

numitr the number of iterations performed

sums a vector of indicator value probability sums

clustering the vector of cluster memberships (as integers) for each sample

Note

Like many iterative re-assignment algorithms, optindval is likely to be VERY slow from a random
start or poor initial condition. optindval is maybe better used to polish existing classifications

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

optpart, opttdev, optsil

Examples

data(shoshveg) # returns a data.frame of vegetation data called shoshveg
dis.bc <- dsvdis(shoshveg,'bray') # generate Bray/Curtis dissimilarity

matrix
opt.5 <- optpart(5,dis.bc) # generate 5-cluster optpart
Not run: res <- optindval(shoshveg,opt.5) # polish the optpart result
Not run: classmatch(opt.5,res) # see the plot re-assignments

http://ecology.msu.montana.edu/labdsv/R

28 optpart

optpart Optimal Partitioning of Dissimilarity/Distance Matrices

Description

Optimal partitioning is an iterative re-allocation algorithm to maximize the ratio of within-cluster
similarity/among-cluster similarity for a given number of clusters. Optpart can operate as either a
crisp (classical) partitioning, or a fuzzy partitioning algorithm.

Usage

optpart(x, dist, maxitr = 100, mininc = 0.001, maxdmu = 1)

Arguments

x an integer, integer vector, factor vector, or objects of class ‘clustering’, ‘partana’,
‘partition’ or ‘stride’

dist a object of class ‘dist’ from dist, dsvdis, or vegdist

maxitr the maximum number of iterations to perform

mininc the minimum increment in the within/among similarity ratio to continue iterating

maxdmu the ‘maximum delta mu’. If 1, a crisp (non-fuzzy) partition results. If (0,1) a
fuzzy partition results.

Details

optpart produces a partition, or clustering, of items into clusters by iterative reallocation of items
to clusters so as to maximize the within cluster/ among cluster similarity ratio. At each iteration
optpart ranks all possible re-allocations of a sample from one cluster to another. The re-allocation
that maximizes the change in the within-cluster/among-cluster ratio is performed. The next best
reallocation is considered, and if it does not include any clusters already modified, it is also per-
formed, as re-allocations of independent clusters are independent and additive in effect. When no
further re-allocations can be performed in that iteration, the algorithm recalculates all possible re-
allocations and iterates again. When no re-allocations exist that improve the within/among ratio
greater than ‘mininc’, or the maximum number of iterations is reached, the algorithm stops.

optpart is designed to run from a random start or the levels of a factor, or preferably from existing
initial partitions. Specifying a single integer gives the number of clusters desired using a random
start. Specifying an integer vector gives the initial assignments of items to clusters. Initial assign-
ments can also be extracted from a number of objects. Specific methods exist for objects of class
‘clustering’ from functions slice or archi, class ‘partana’ from function partana, class ‘stride’
from stride, or class ‘partition’ from functions pam or diana. optpart is deterministic from a
given initial condition. To get good results from a random start, multiple random starts should be
attempted, using function bestopt.

Optpart is an unweighted algorithm, i.e. each of the (n2−n)/2 pairwise distances or dissimilarities
is included in the calculation of the ratio exactly once. Optpart somewhat penalizes small clusters,

optpart 29

as small clusters contribute only (n2
i − ni)/2 values to the numerator; the extreme case is that a

cluster with a single member does not contribute anything to the numerator.

It is an interesting characteristic of optpart that no minimum cluster size is enforced, and it is
common for partitions of a large number of clusters to contain null clusters, i.e. clusters with no
members. This is not a bug or error, but rather an indication that a partition with a fewer number
of clusters achieves a better within/among similarity ratio than does a larger number. It is also
somewhat common that for solutions with a small or intermediate number of clusters, optpart places
outliers in a small ‘trash’ cluster.

When optpart is run as a fuzzy partitioning algorithm, it often achieves a surprisingly low entropy,
with many items assigned completely to a single cluster.

Value

an object of class partana, a list with elements:

ptc a matrix of item mean similarity to each cluster

ctc a matrix of mean cluster-to-cluster similarity

musubx a matrix of membership of each item to each cluster. If maxdmu is 1, this will be
a single 1 in the appropriate cluster and 0 in all others. If maxdmu is (0,1) then
the musubx represent fuzzy memberships in each cluster.

clustering a vector giving the cluster each item is assigned to. If optpart is run as a fuzzy
partitioning, this is determined by the maximum membership observed.

ratio the vector of within/among similarities achieved at each iteration. The final non-
zero value is the final ratio achieved.

numitr the number of iterations performed

names the names of the items clustered

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

See Also

partana

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
summary(opt.5)

http://ecology.msu.montana.edu/labdsv/R

30 optsil

optsil Clustering by Optimizing Silhouette Widths

Description

Silhouette width is a measurement of the mean similarity of each object to the other objects in its
cluster, compared to its mean similarity to the most similar cluster (see silhouette). Optsil is an
iterative re-allocation algorithm to maximize the mean silhouette width of a clustering for a given
number of clusters.

Usage

optsil(x,dist,maxitr)

Arguments

x an integer, a vector of integers, an object of class ‘clustering’, ‘partana’, ‘parti-
tion’, or ‘stride’

dist a object of class ‘dist’ from dist, dsvdis, or vegdist

maxitr the maximum number of iterations to perform

Details

optsil produces a partition, or clustering, of items into clusters by iterative reallocation of items
to clusters so as to maximize the mean silhouette width of the classification. At each iteration
optsil ranks all possible re-allocations of a item from one cluster to another. The reallocation that
maximizes the change in the mean silhouette width is performed. Because silhouette widths are
not independent of clusters that are not modified, only a single reallocation can be preformed in a
single iteration. When no further re-allocations result in an improvement, or the maximum number
of iterations is achieved, the algorithm stops.

Optsil is an unweighted algorithm, i.e. each of the objects is included in the calculation exactly
once.

Optsil can be extremely slow to converge, and is best used to ‘polish’ an existing partition or clus-
terings resulting from slicing an hclust or from functions optpart, pam, diana or other initial
clusterings. It is possible to run optsil from a random start, but is EXTREMELY SLOW to con-
verge, and should be done only with caution.

Value

a list with elements:

clustering a vector of integers giving the cluster assignment for each object

sils a vector of the silhouette widths achieved at each iteration

numitr the number of iterations performed

opttdev 31

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

optpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
sil.5 <- optsil(opt.5,dis.bc,100) # make take a few minutes
summary(silhouette(sil.5,dis.bc))
Not run: plot(silhouette(sil.5,dis.bc))

opttdev Optimizing Classification by Minimizing Table Deviance

Description

opttdev is a iterative re-assignment classification algorithm that assigns samples to clusters to min-
imize the total deviance of a table with respect to the row-wise relative abundance of the elements

Usage

opttdev(comm,clustering,maxitr=100,minsiz=5)

Arguments

comm a vegetation or other taxon table with samples as rows and taxa as columns

clustering an index of cluster membership for each sample. May be either a numeric vector
of length equal to the number of samples, or an object that inherits from class
‘cluster’

maxitr the maximum number of iterations to attempt

minsiz the minimum size cluster to consider reassigning a sample out of

Details

Iterative re-allocation algorithms temporarily re-assign each sample to each of the other possible
clusters and calculate a goodness-of-clustering statistic for each re-assignment. The best of all
possible re-assignments is then executed and the algorithm iterates until there are no more good re-
assignments or the maximum number of iterations is reached. In opttdev, the goodness-of-clustering
statistic is total table deviance as calculated by tabdev. See the help file for tabdev for more detail.

32 partana

Value

a list which inherits from class ‘opttdev’, ‘clustering’ with components:

numitr the number of iterations performed

dev a vector of total table deviance at each iteration of length ‘numitr’

clustering the vector of cluster memberships (as integers) for each sample

Note

Like many iterative re-assignment algorithms, opttdev is likely to be VERY slow from a random
start or poor initial condition. opttdev is maybe better used to polish existing classifications

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

optpart, optindval, optsil

Examples

Not run: data(shoshveg) # returns a data.frame of vegetation
Not run: data(shoshsite)
Not run: res <- opttdev(shoshveg,

as.numeric(cut(shoshsite$elevation,5)))
End(Not run)
Not run: # likely to be VERY slow

partana Partition Analysis

Description

Partition analysis evaluates the within-cluster to among-cluster similarity of classifications as a
measure of cluster validity

Usage

partana(c,dist)
S3 method for class 'partana'
summary(object, ...)
S3 method for class 'partana'
plot(x,panel='all',zlim=range(x$ptc),col=heat.colors(12),...)

http://ecology.msu.montana.edu/labdsv/R

partana 33

Arguments

c an integer or factor vector, or an object of class ‘clustering’, ‘partana’, ‘parti-
tion’, or ‘stride’

dist an object of class ‘dist’ from functions dist, dsvdis or vegdist

.

object an object of class ‘partana’

x an object of class ‘partana’

panel an integer switch to indicate which panel to draw

zlim the min and max values for the color map

col a color map name (heat.colors(12) is the default)

... ancillary arguments to pass to summary or plot

Details

Calculates mean object-to-cluster similarity, mean cluster-to-cluster similarity, and mean within-
cluster to among-cluster similarity. partana operates on partitions or clusterings produced by a wide
range of algorithms, including specific methods for the products of functions optpart, slice, pam
and diana.

summary produces a matrix of the mean cluster-to-cluster similarities, and the overall within-cluster/among-
cluster similarity ratio.

plot plots two panels in sequence in the current device. The first shows the mean similarity of
every object to each cluster, sorted by mean similarity to the other members of its own cluster, with
objects as columns and clusters as rows. The second panel shows the mean similarity of every
cluster to every other cluster and mean within-cluster similarity, ignoring cluster size. These plots
are known as ‘Mondriaan’ plots, where the similarities are given by lines colored from min to max.
If the ‘partana’ object was produced by optpart, a third panel is plotted showing the trace of the
optimization.

Value

an object of class ‘partana’ with components:

ptc matrix of mean object-to-cluster similarity

ctc matrix of mean cluster-to-cluster similarity

clustering vector of numeric cluster assignments

ratio within-cluster to among-cluster similarity ratio

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

partition, optpart, plot.partana

34 partition

Examples

data(shoshveg)
data(shoshsite)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
demo.part <- partana(cut(shoshsite$elev,5),dis.bc)
summary(demo.part)

partition Convert Object to Partition Object

Description

Convert an object of class ‘partana’ or class ‘clustering’ to an object of class ‘partition’.

Usage

partition(x, dist, ...)

Arguments

x an object which inherits from class ‘clustering’

dist an object of class ‘dist’

... ancillary arguments to pass to ‘partition’

Details

A ‘partition’ object is the output of several functions in package ‘cluster’. This utility function
converts objects from package ‘optpart’ to ‘partitions’ so that functions in that library are available.

Value

an object of class ‘partition’ with components (and possibly others):

clustering vector of numeric cluster assignments

silinfo a list with all silhouette information, only available when the number of clusters
is non-trivial, i.e., 1 < k < n. See ‘silhouette’

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References

http://ecology.msu.montana.edu/labdsv/R

See Also

silhouette, partition, optpart

http://ecology.msu.montana.edu/labdsv/R
http://ecology.msu.montana.edu/labdsv/R

phi 35

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
part <- partana(sample(1:5,nrow(shoshveg),replace=TRUE),dis.bc)
result <- partition(part,dis.bc)

phi Calculating the phi Statistic on Taxon Classifications

Description

Calculates the phi statistic on a classified table of taxa

Usage

phi(comm,clustering,minplt=10,p.adjust=FALSE)

Arguments

comm a data.frame with samples as rows and attributes as columns

clustering a vector of integers or an object of class ‘clustering’, ‘partition’, or ‘partana’

minplt the minimum number of samples a species must occur in to be included in the
calculation

p.adjust switch to control adjusting probabilities for simultaneous inference by Hochberg
correction

Details

phi is a statistic of agreement between two vectors. In this case the function calculates the distri-
bution of each species within clusters of a partition, calculates the phi statistic for each species in
each cluster.

ϕ =
ad− bc√

(a+ b)× (c+ d)× (a+ c)× (b+ c)

where:

a sample is in specified type and species is present
b sample is not in group and species is present
c sample is in type but species is not present
d sample is not in type and species is not present

Value

A data.frame of ϕ values with species as rows and clusters as columns

36 refine

Author(s)

David W. Roberts <droberts@montana.edu>

References

Tichy, L. and M. Chytry. 2006. Statistical determination of diagnostic species for site groups of
unequal size. Journal of Vegetation Science 17:809-818.

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
phi(shoshveg,opt.5)

refine Refining a Classification by Re-Assigning Memberships

Description

Refine allows you to re-assign specific elements of a classification from one class or cluster to
another. In the default case, you simply interactively enter sample IDs and give a new cluster
assignment. For PCO and NMDS ordinations, you do the assignments with a mouse.

Usage

Default S3 method:
refine(comm,clustering,...)
S3 method for class 'dsvord'
refine(x,clustering,ax=1,ay=2,...)

Arguments

comm a community data.frame

x an ordination of class ‘dsvord’

clustering a clustering identity or membership vector

ax the X axis of the ordination

ay the Y axis of the ordination

... ancillary arguments to allow differing numbers of arguments

Value

a list object of class ‘clustering’ with one component.

clustering a numeric vector giving the cluster assignment for each sample

reordclust 37

Note

There are many, many ways to produce classifications in R, including several in package ‘optpart’.
refine is designed to take one of these classifications and polish it by making relatively few trans-
fers. The ordination-based routines allow visual assessment of cluster validity, although in reduced
dimensionality, which can be misleading.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

Examples

Not run: data(shoshveg)
Not run: dis.bc <- dsvdis(shoshveg,'bray')
Not run: opt.5 <- optpart(5,dis.bc)
Not run: nmds.bc <- nmds(dis.bc)
Not run: plot(nmds.bc)
Not run: res <- refine(nmds.bc,opt.5)

reordclust Re-order Clusters in a Classification

Description

In it’s simplest form simply reassigns cluster numbers in an existing classification to re-order tables
and graphs. Can also be used to combine clusters into a fewer number of clusters.

Usage

reordclust(clustering,from,to)

Arguments

clustering a vector of (interger) cluster mmeberships, or an object of class ‘clustering’,
‘partana’, or ‘partition’

from an integer vector equal in length to the number of clusters that specifies the
current clusters

to an integer vector equal in length to the number of clusters that specifies the
clusters the current clusters map to

Details

The function simply maps cluster numbers in the ‘from’ vector to the respective cluster number in
the ‘to’ vector.

http://ecology.msu.montana.edu/labdsv/R

38 shoshsite

Value

an object of class ‘clustering’

Note

As demonstrated in the examples below, reordclass can also combine existing clusters into fewer
clusters while reordering if more than one cluster in the ‘from’ vector maps to the same cluster in
the ‘to’ cluster.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

mergeclust

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.10 <- optpart(10,dis.bc)
new <- reordclust(opt.10,1:10,c(1,3,5,7,9,2,4,6,8,10))

simply re-ordered
new2 <- reordclust(opt.10,1:10,c(1,1,2,2,3,3,4,4,5,5))

merge 1 and 2 into 1, 3 and 4 into 2, etc.

shoshsite Site Data for the Shoshone National Forest, Wyoming, USA

Description

The coniferous forests of the Shoshone National Forest range from lower elevation woodlands dom-
inated by Pinus flexilis, through forests of Pseudotsuga menziesii, Pinus contorta, Picea engel-
mannii, Abies lasiocarpa and Pinus albicaulis with increasing elevation (Steele et al. 1983). One
hundred and fifty sample plots were chosen at random from a larger set for this data set; the larger
set was stratified by elevation, exposure, surficial geology, and geographic distribution.

Usage

data(shoshsite)

http://ecology.msu.montana.edu/labdsv/R

shoshveg 39

Format

A data.frame with sample plots as rows, and site variable as columns. Variables comprise:

elevation elevation above sea level in meters
aspect compass orientation of the site in degrees
slope slope steepness in percent
av aspect value: (cosd(aspect-30)+1)/2
swb site water balance: a tipping bucket model of water-year soil water
sprppt spring precipitation in cm
sumppt summer precipitation in cm
autppt autumn precipitation in cm
winppt winter precipitation in cm
sprtmp spring mean temperature degrees C
sumtmp summer mean temperature degrees C
auttmp autumn mean temperature degrees C
winppt winter mean temperature degrees C
sprpet spring potential evapotranspiration in cm
sumpet summer potential evapotranspiration in cm
autpet autumn potential evapotranspiration in cm
winpet winter potential evapotranspiration in cm
sprrad spring direct and diffuse solar radiation (correcting for topographic shading)
sumrad summer direct and diffuse solar radiation (correcting for topographic shading)
autrad autumn direct and diffuse solar radiation (correcting for topographic shading)
win winter direct and diffuse solar radiation (correcting for topographic shading)
ffd frost free days
dday degree days heat sum
tcol mean monthly temperature of the coldest month

Note

The data were derived from a multi-year effort by numerous scientists and field technicians. The
project was directed by Kent Houston, Soil Scientist and Ecologist, Shoshone National Forest. The
site data were calculated primarily by Dr. Niklaus Zimmermann, WSL, Birmensdorf, Switzerland
http://www.wsl.ch/staff/niklaus.zimmermann/biophys.html

Source

Roberts, D.W. 2008. Statistical Analysis of Multidimensional Fuzzy Set Ordinations. Ecology
89:1246-1260

shoshveg Vascular Plant Species Cover for the Shoshone National Forest,
Wyoming, USA

http://www.wsl.ch/staff/niklaus.zimmermann/biophys.html

40 silhouette.partana

Description

Percent cover (in codes) for 368 vascular plants on 150 375m2 sample plots stratified across the
Shoshone National Forest, Wyoming, USA. Plots were chosen at random from a larger dataset.

Usage

data(shoshveg)

Format

A data.frame with sample plots as rows and species as columns. Sample plots match the ‘shoshsite’
dataset.

The cover of all vascular plant species was recorded according to the following scale: present but
< 1% = 0.1, 1-5% = 0.5, 5-15% = 1.0, 15-25% = 2.0, 25-35% = 3.0, 35-45% = 4.0, 45-55% = 5.0,
55-65% = 6.0, 65=75% = 7.0, 75-85% = 8.0. No species exhibited greater than 80% cover in the
data set.

Note

The data were derived from a multi-year effort by numerous scientists and field technicians. The
project was directed by Kent Houston, Soil Scientist and Ecologist, Shoshone National Forest

Source

Roberts, D.W. 2008. Statistical Analysis of Multidimensional Fuzzy Set Ordinations. Ecology
89:1246-1260.

silhouette.partana Produce a Silhouette Object From a Partana, Clustering, or Stride
Object

Description

Extracts components from a partana, clustering, or stride object, and passes the values to the
silhouette function to produce an object of class silhouette.

Usage

S3 method for class 'partana'
silhouette(x, dist, ...)
S3 method for class 'clustering'
silhouette(x, dist, ...)
S3 method for class 'stride'
silhouette(x, dist, ...)
testsil(sil)

silhouette.partana 41

Arguments

x an object of class ‘partana’, ‘clustering’, or ‘stride’

dist an object of class dist

... miscellaneous arguments to pass to function silhouette

sil an object of class ‘silhouette’

Details

For ‘partana’ and ‘clustering’ objects the advantage over calling silhouette directly is that the
row.names of the resulting object are added to the results, as opposed to consecutive integers.

For objects of class ‘stride’ the function extracts the component ‘clustering’ for each level of a stride
object, and calls function silhouette in library ‘cluster’ returniung the mean silhouette width for
each case.

testsil identifies ‘misfits’ in a partition, defined as plots with a negative silhouette width, and
prints them out in a sorted list.

Value

An object of class silhouette

Note

This is a a simple conversion routine to allow plotting a silhouette plot for an object of class partana.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

silhouette

Examples

data(shoshveg) # produces a data frame of vegetation data,
#samples as rows, attributes as columns

dis.bc <- dsvdis(shoshveg,'bray/curtis') # produces a Bray/Curtis
dissimilarity matrix

opt.5 <- optpart(5,dis.bc) # produces an optimal partitioning into
5 clusters

silhouette(opt.5,dis.bc) # calculates the silhouette values
Not run: plot(silhouette(opt.5,dis.bc)) # produce silhouette

plot on current device

http://ecology.msu.montana.edu/labdsv/R

42 slice

slice Slice a Hierarchical Clustering Dendrogram with a Mouse

Description

Allows a simple classification of objects by slicing a dendrogram of a hierarchical cluster analysis
graphically with a mouse, or by simply giving a number.

Usage

slice(clust, k=NULL)

Arguments

clust an object of class ‘hclust’ produced by hclust

k a desired number of clusters. If null, the function waits on a mouse click

Value

an object of class ‘clustering’, a list with a vector of cluster memberships

Note

This function is a simple wrapper for cutree that allows users to click their mouse at the height
they desire to slice the dendrogram, and to establish the result with a class of ‘clustering’ for ease
of use in other functions. If you want to use the mouse, the dendrogram must have been previously
plotted in the current graphic device.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

See Also

ordpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
demo <- hclust(dis.bc,'ave')
ave.5 <- slice(demo,5)
Not run: plot(demo)
Not run: ave.clust <- slice(demo)

http://ecology.msu.montana.edu/labdsv/R

stride 43

stride Stride: Producing a Sequence of Clusterings

Description

stride proceeds along a specified sequence creating clusterings or partitions of a dissimilarity matrix
for each value of the sequence.

Usage

stride(seq,arg2,type='pam',numrep=10,maxitr=100)
S3 method for class 'stride'
plot(x, dist, col2=4, ...)

Arguments

seq a sequence, in either a:b or seq(a,b,c) form

arg2 an object of class ‘dist’ from dist, dsvdis or vegdist among other sources, or
of class ‘hclust’

type if arg2 is an object of class ‘dist’, type specifies the algorithm to produce clus-
ters, and can be either ‘pam’ or ‘optpart’.

numrep if arg2 is an object of class ‘dist’ and type = ‘optpart’, numrep specifies the
number of replicates to run in function optpart.

maxitr if arg2 is an object of class ‘dist’ and type = ‘optpart’ numrep specifies the
maximum number of iterations per replicate in function optpart

x an object of class ‘stride’

dist an object of class ‘dist’ from dist, dsvdis, or vegdist

col2 the color code for the second line in the graph

... ancillary arguments to the plot function

Details

The specific action of function stride depends on the class of the second argument. If arg2 is of
class ‘dist’, then clusters are generated by a fixed cluster algorithm. In this case, if type is ‘pam’,
the function pam is called to produce the clusters. If type is ‘optpart’ the function optpart is called
to produce the clusters. If arg2 is of class ‘hclust’, then the hlcust object is successively ‘sliced’ at
levels specified by the sequence. The object of class ‘hclust’ can result from the function hclust
using any of the methods provided, or by casting an object of class ‘partition’ to class ‘hlcust’ with
the as.hclust function.

The default plot method for a stride plots the partana ratios (see partana) of each partition of the
sequence on the left Y axis, and the silhouette widths of the same partitions on the right Y axis.

44 tabdev

Value

an object of class ‘stride’, which is a list with components:

clustering a data.frame with items as rows, and cluster IDs as columns, with one column
for each value of the sequence

seq a copy of the sequence employed

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
results <- stride(2:5,dis.bc)

tabdev Classification Validity Assessment by Table Deviance

Description

Table deviance is a method to assess the quality of classifications by calculating the clarity of the
classification with respect to the original data, as opposed to a dissimilarity or distance matrix
representation

Usage

Default S3 method:
tabdev(x,clustering,nitr=999,...)

S3 method for class 'stride'
tabdev(x,taxa,...)

S3 method for class 'tabdev'
summary(object,p=0.05,...)

Arguments

x a matrix or data.frame of multivariate observations, with objects as rows, and
attributes as columns

clustering a vector of integer cluster assignments, or an object of class ‘clustering’ or ‘par-
tana’

nitr number of iterations to perform in calculating the probability of obtaining as
effective a classification as observed

taxa a data.frame with samples as rows and species as columns
object and object of class ‘tabdev’
p the maximum probability threshold to list species in the summary table
... ancillary arguments to maintain compatibility with generic summary function

testpart 45

Details

Tabdev calculates the concentration of values within clusters. For each column, tabdev calculates
the sum of values within classes and the sum within classes divided by the sum of that column to get
fractional sums by class. These values are used to calculate the deviance of each row. Attributes that
are widely dispersed among classes exhibit high deviance; attributes that are concentrated within a
single class contribute zero deviance. An effective classification should exhibit low deviance.

Tabdev then permutes the values within columns and calculates the probability of observing as low
a deviance as observed as $$ (m+1)/(niter + 1)$$ where m is the number of cases with as low or
lower deviance as observed.

Value

a list with components:

spcdev a data.frame with species, deviance, and probability as columns

totdev the total deviance of the entire table

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
tabdev(shoshveg,opt.5)

testpart Identify Misclassified Plots in a Partition

Description

testopt analyzes the mean similarity of each sample to the cluster to which it is assigned to all other
clusters, and lists those samples which have similarity higher to another cluster than to the one to
which they are assigned.

Usage

testpart(part,ord=TRUE)

Arguments

part a object of class ‘partana’ from partana or optpart

ord a switch to control whether the output is ordered

http://ecology.msu.montana.edu/labdsv/R

46 typal

Details

Simply examines each sample plot, comparing the mean similarity of that sample to all other sam-
ples in the cluster to which it is assigned as compared to its mean similarity to all other clusters.
Samples which are more similar to other clusters than to the one to which they are assigned are
listed in a table which gives their current cluster assignment, the cluster to which they are more
similar, and the mean similarities of that sample to all clusters.

If ‘ord=TRUE’ then the output is ordered to reflect target clusters.

Value

a table of values

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

partana, partana, silhouette

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
testpart(opt.5)

typal Identification of Typal Samples in a Partition

Description

Identifies samples that typify clusters in a partition based on dissimilarity.

Usage

typal(clustering,dist,k=1)

Arguments

clustering a vector of integers or an object of class ‘clustering’, ‘partition’, or ‘partana’

dist and object of class ‘dist’ from dist, dsvdis, or vegdist

k number of typal species/cluster to identify

typal 47

Details

typal calculates two versions of typal species based on silhouette analysis (see silhouette) and
partana analysis (see partana). With respect to silhouette analysis, the function returns k species
with the largest positive silhouette width for each cluster. With respect to the partana analysis the
function returns the k species with the highest mean similarity to the cluster.

Value

Returns a list with two data.frames. The first, partana, gives the clusters as rows and typal samples
as columns from the perspective of the partana ratio. The second, silhouette, also gives the clusters
as rows and typal samples as columns but from the perspective of silhouette widths.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- bestopt(dis.bc,5,20)
typal(opt.5,dis.bc,3)

Index

∗ clustering
bestfit, 3
clustering, 10
consider, 13
mergeclust, 21
reordclust, 37

∗ cluster
archi, 2
bestopt, 4
classmatch, 6
clique, 7
disdiam, 14
extract, 15
flexbeta, 16
lambda, 19
maxsimset, 20
murdoch, 22
neighbor, 24
optindval, 26
optpart, 28
optsil, 30
opttdev, 31
partana, 32
partition, 34
refine, 36
silhouette.partana, 40
slice, 42
stride, 43
tabdev, 44
testpart, 45
typal, 46

∗ datasets
shoshsite, 38
shoshveg, 39

∗ hplot
clique.test, 9
stride, 43

∗ htest
confus, 11

phi, 35
∗ multivariate

clique.test, 9
compare, 10
optimclass, 25

agnes, 16, 17
archi, 2, 28

bestfit, 3
bestopt, 4, 28

classmatch, 6, 19
clique, 7, 9
clique.test, 9
clustering, 10, 22
compare, 10
confus, 11
consider, 13
const, 10

diana, 28, 30, 33
disdiam, 14
dist, 3, 5, 7, 14, 28, 30, 33, 43
dsvdis, 3, 5, 7, 14, 28, 30, 33, 43, 46

envrtest, 9
extract, 15

flexbeta, 16
fuzconfus (confus), 11

gensilwidth, 17
getsets (maxsimset), 20

hclust, 30

indval, 24, 26

lambda, 19

maxpact (maxsimset), 20

48

INDEX 49

maxsimset, 20
mergeclust, 21
mss.test, 9
mss.test (maxsimset), 20
murdoch, 22

neighbor, 24

optimclass, 25
optindval, 26, 32
optpart, 4, 5, 7, 19, 28, 30–34, 43
optsil, 30, 32
opttdev, 31
ordpart, 42

pam, 5, 28, 30, 33, 43
partana, 5, 22, 28, 32, 43, 46, 47
partition, 7, 19, 22, 33, 34, 34
phi, 35
plot.clique (clique), 7
plot.mss (maxsimset), 20
plot.murdoch (murdoch), 22
plot.partana, 33
plot.partana (partana), 32
plot.stride (stride), 43
print.disdiam (disdiam), 14
print.murdoch (murdoch), 22

refine, 36
reordclust, 37

shoshsite, 38
shoshveg, 39
silhouette, 18, 24, 30, 34, 40, 41, 46, 47
silhouette.clustering

(silhouette.partana), 40
silhouette.partana, 40
silhouette.stride (silhouette.partana),

40
slice, 7, 19, 28, 33, 42
stride, 15, 25, 28, 43
summary.clique (clique), 7
summary.murdoch (murdoch), 22
summary.partana (partana), 32
summary.tabdev (tabdev), 44

tabdev, 24, 31, 44
testpart, 45
testsil (silhouette.partana), 40
typal, 4, 46

vegdist, 3, 5, 7, 14, 28, 30, 33, 43, 46

	archi
	bestfit
	bestopt
	classmatch
	clique
	clique.test
	clustering
	compare
	confus
	consider
	disdiam
	extract
	flexbeta
	gensilwidth
	lambda
	maxsimset
	mergeclust
	murdoch
	neighbor
	optimclass
	optindval
	optpart
	optsil
	opttdev
	partana
	partition
	phi
	refine
	reordclust
	shoshsite
	shoshveg
	silhouette.partana
	slice
	stride
	tabdev
	testpart
	typal
	Index

