# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "kpcalg" in publications use:' type: software license: GPL-2.0-or-later title: 'kpcalg: Kernel PC Algorithm for Causal Structure Detection' version: 1.0.1 doi: 10.32614/CRAN.package.kpcalg abstract: Kernel PC (kPC) algorithm for causal structure learning and causal inference using graphical models. kPC is a version of PC algorithm that uses kernel based independence criteria in order to be able to deal with non-linear relationships and non-Gaussian noise. authors: - family-names: Verbyla given-names: Petras email: petras.verbyla@mrc-bsu.cam.ac.uk - family-names: Desgranges given-names: Nina Ines Bertille - family-names: Wernisch given-names: Lorenz repository: https://cranhaven.r-universe.dev commit: 4b88b8142bb2a8116681f8cf4e1ec314081ddc24 date-released: '2017-01-19' contact: - family-names: Verbyla given-names: Petras email: petras.verbyla@mrc-bsu.cam.ac.uk