Package: fingraph (via r-universe)

March 1, 2025

Title Learning Graphs for Financial Markets

Version 0.1.0

Date 2023-02-02

Description Learning graphs for financial markets with optimization algorithms. This package contains implementations of the algorithms described in the paper: Cardoso JVM, Ying J, and Palomar DP (2021) <https://papers.nips.cc/paper/2021/hash/ a64a034c3cb8eac64eb46ea474902797-Abstract.html> ``Learning graphs in heavy-tailed markets", Advances in Neural Informations Processing Systems (NeurIPS).

URL https://github.com/convexfi/fingraph/

BugReports https://github.com/convexfi/fingraph/issues

License GPL-3 **Encoding** UTF-8 Depends spectralGraphTopology Imports MASS, stats, progress, mvtnorm Suggests testthat RoxygenNote 7.1.1 NeedsCompilation no Author Ze Vinicius [cre, aut] Maintainer Ze Vinicius <jvmirca@gmail.com> Date/Publication 2023-02-14 09:20:02 UTC Additional repositories https://cranhaven.r-universe.dev Config/pak/sysreqs libxml2-dev Repository https://cranhaven.r-universe.dev RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev **RemoteRef** package/fingraph RemoteSha 70bb222f452ef145989b6a01479ee351972e4a9b RemoteSubdir fingraph

Contents

learn_connected_graph			•				•		•	•		•	•	•	•	•	•			•		2
learn_kcomp_heavytail_graph																	•			•		3
learn_regular_heavytail_graph	•		•		•	•	•		•	•		•	•		•		•	•	•	•		5
																						7

Index

learn_connected_graph Laplacian matrix of a connected graph with Gaussian data Computes the Laplacian matrix of a graph on the basis of an observed data matrix, where we assume the data to be Gaussian distributed.

Description

Laplacian matrix of a connected graph with Gaussian data

Computes the Laplacian matrix of a graph on the basis of an observed data matrix, where we assume the data to be Gaussian distributed.

Usage

```
learn_connected_graph(
    S,
    w0 = "naive",
    d = 1,
    rho = 1,
    maxiter = 10000,
    reltol = 1e-05,
    verbose = TRUE
)
```

Arguments

S	a p x p covariance matrix, where p is the number of nodes in the graph
wØ	initial vector of graph weights. Either a vector of length $p(p-1)/2$ or a string indicating the method to compute an initial value.
d	the nodes' degrees. Either a vector or a single value.
rho	constraint relaxation hyperparameter.
maxiter	maximum number of iterations.
reltol	relative tolerance as a convergence criteria.
verbose	whether or not to show a progress bar during the iterations.

2

Value

A list containing possibly the following elements:

laplacian	estimated Laplacian matrix
adjacency	estimated adjacency matrix
theta	estimated Laplacian matrix slack variable
maxiter	number of iterations taken to reach convergence
convergence	boolean flag to indicate whether or not the optimization converged

```
learn_kcomp_heavytail_graph
    Laplacian matrix of a k-component graph with heavy-tailed data Com-
    putes the Laplacian matrix of a graph on the basis of an observed data
    matrix, where we assume the data to be Student-t distributed.
```

Description

Laplacian matrix of a k-component graph with heavy-tailed data

Computes the Laplacian matrix of a graph on the basis of an observed data matrix, where we assume the data to be Student-t distributed.

Usage

```
learn_kcomp_heavytail_graph(
 Х,
 k = 1,
 heavy_type = "gaussian",
 nu = NULL,
 w0 = "naive",
 d = 1,
 beta = 1e-08,
  update_beta = TRUE,
  early_stopping = FALSE,
  rho = 1,
  update_rho = FALSE,
 maxiter = 10000,
 reltol = 1e-05,
 verbose = TRUE,
  record_objective = FALSE
)
```

Arguments

Х	an n x p data matrix, where n is the number of observations and p is the number of nodes in the graph.
k	the number of components of the graph.
heavy_type	a string which selects the statistical distribution of the data . Valid values are "gaussian" or "student".
nu	the degrees of freedom of the Student-t distribution. Must be a real number greater than 2.
w0	initial vector of graph weights. Either a vector of length $p(p-1)/2$ or a string indicating the method to compute an initial value.
d	the nodes' degrees. Either a vector or a single value.
beta	hyperparameter that controls the regularization to obtain a k-component graph
update_beta	whether to update beta during the optimization.
early_stopping	whether to stop the iterations as soon as the rank constraint is satisfied.
rho	constraint relaxation hyperparameter.
update_rho	whether or not to update rho during the optimization.
maxiter	maximum number of iterations.
reltol	relative tolerance as a convergence criteria.
verbose	whether to show a progress bar during the iterations.
record_objectiv	/e

whether to record the objective function per iteration.

Value

A list containing possibly the following elements:

laplacian	estimated Laplacian matrix
adjacency	estimated adjacency matrix
theta	estimated Laplacian matrix slack variable
maxiter	number of iterations taken to reach convergence
convergence	boolean flag to indicate whether or not the optimization conv erged
beta_seq	sequence of values taken by the hyperparameter beta until convergence
<pre>primal_lap_resi</pre>	dual
	primal residual for the Laplacian matrix per iteratio n
primal_deg_resi	dual
	primal residual for the degree vector per iteration
dual_residual	dual residual per iteration
lagrangian	Lagrangian value per iteration
elapsed_time	Time taken to reach convergence

learn_regular_heavytail_graph

Laplacian matrix of a connected graph with heavy-tailed data Computes the Laplacian matrix of a graph on the basis of an observed data matrix, where we assume the data to be Student-t distributed.

Description

Laplacian matrix of a connected graph with heavy-tailed data

Computes the Laplacian matrix of a graph on the basis of an observed data matrix, where we assume the data to be Student-t distributed.

Usage

```
learn_regular_heavytail_graph(
   X,
   heavy_type = "gaussian",
   nu = NULL,
   w0 = "naive",
   d = 1,
   rho = 1,
   update_rho = TRUE,
   maxiter = 10000,
   reltol = 1e-05,
   verbose = TRUE
)
```

Arguments

X	an n x p data matrix, where n is the number of observations and p is the number of nodes in the graph
heavy_type	a string which selects the statistical distribution of the data. Valid values are "gaussian" or "student".
nu	the degrees of freedom of the Student-t distribution. Must be a real number greater than 2.
wØ	initial vector of graph weights. Either a vector of length $p(p-1)/2$ or a string indicating the method to compute an initial value.
d	the nodes' degrees. Either a vector or a single value.
rho	constraint relaxation hyperparameter.
update_rho	whether or not to update rho during the optimization.
maxiter	maximum number of iterations.
reltol	relative tolerance as a convergence criteria.
verbose	whether or not to show a progress bar during the iterations.

6

A list containing possibly the following elements:

laplacian	estimated Laplacian matrix
adjacency	estimated adjacency matrix
theta	estimated Laplacian matrix slack variable
maxiter	number of iterations taken to reach convergence
convergence	boolean flag to indicate whether or not the optimization conv erged
<pre>primal_lap_resi</pre>	dual
	primal residual for the Laplacian matrix per iteration
primal_deg_resi	dual
	primal residual for the degree vector per iteration
dual_residual	dual residual per iteration
lagrangian	Lagrangian value per iteration
elapsed_time	Time taken to reach convergence

Index

learn_connected_graph, 2
learn_kcomp_heavytail_graph, 3
learn_regular_heavytail_graph, 5