# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "elrm" in publications use:' type: software license: GPL-2.0-or-later title: 'elrm: Exact Logistic Regression via MCMC' version: 1.2.5 identifiers: - type: doi value: 10.32614/CRAN.package.elrm abstract: Implements a Markov Chain Monte Carlo algorithm to approximate exact conditional inference for logistic regression models. Exact conditional inference is based on the distribution of the sufficient statistics for the parameters of interest given the sufficient statistics for the remaining nuisance parameters. Using model formula notation, users specify a logistic model and model terms of interest for exact inference. See Zamar et al. (2007) for more details. authors: - family-names: Zamar given-names: David email: zamar.david@gmail.com - family-names: Graham given-names: Jinko - family-names: McNeney given-names: Brad preferred-citation: type: article title: 'elrm: Software Implementing Exact-like Inference for Logistic Regression Models' authors: - family-names: Zamar given-names: David email: zamar.david@gmail.com - family-names: McNeney given-names: Brad - family-names: Graham given-names: Jinko journal: Journal of Statistical Software volume: '21' issue: '3' year: '2007' url: https://doi.org/10.18637/jss.v021.i03 start: 1-18 repository: https://cranhaven.r-universe.dev commit: e4b947b62984f7f33d74537eddea16d5696b0511 date-released: '2021-10-25' contact: - family-names: Zamar given-names: David email: zamar.david@gmail.com