Title: | Estimation of Distribution Algorithms Based on Copulas |
---|---|
Description: | Provides a platform where EDAs (estimation of distribution algorithms) based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. |
Authors: | Yasser Gonzalez-Fernandez [aut, cre], Marta Soto [aut] |
Maintainer: | Yasser Gonzalez-Fernandez <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.4.3 |
Built: | 2025-01-10 07:34:06 UTC |
Source: | https://github.com/cranhaven/cranhaven.r-universe.dev |
Extends the EDA
class to implement EDAs based on
multivariate copulas. Objects are created by calling the CEDA
function.
Copula EDAs (CEDA) are a class of EDAs that model the search distributions using a multivariate copula. These algorithms estimate separately the univariate marginal distributions and the dependence structure from the selected population. The dependence structure is represented through a multivariate copula. The following instances of CEDA are implemented.
If the dependence structure is modeled using a product copula, the resulting algorithm corresponds to the Univariate Marginal Distribution Algorithm (UMDA) for the continuous domain (Larrañaga et al. 1999, 2000).
If the dependence structure is modeled using a normal copula, the
resulting algorithm corresponds to the Gaussian Copula Estimation of
Distribution Algorithm (GCEDA) (Soto et al. 2007; Arderí 2007).
If non-normal marginal distributions are used, the correlation
matrix is calculated using the inversion of Kendall's tau for each pair
of variables (Demarta and McNeil 2005). The correction proposed in
(Rousseeuw and Molenberghs 1993) is applied if the resulting correlation
matrix is not positive-definite. If normal marginal distributions are
used, the correlation matrix is estimated directly from the
selected population using the cor
function.
The following parameters are recognized by the functions that implement the
edaLearn
and edaSample
methods for the
CEDA
class.
copula
Multivariate copula. Supported values are:
"indep"
(independence or product copula) and "normal"
(normal copula). Default value: "normal"
.
margin
Marginal distributions. If this argument is "xxx"
,
the algorithm will search for three functions named fxxx
.
pxxx
and qxxx
to fit each marginal distribution
and evaluate the cumulative distribution function and its inverse,
respectively. Default value: "norm"
.
popSize
Population size. Default value: 100
.
name
:See the documentation of the slot in the
EDA
class.
parameters
:See the documentation of the slot in the
EDA
class.
signature(eda = "CEDA")
: The edaLearnCEDA
function.
signature(eda = "CEDA")
: The edaSampleCEDA
function.
Arderí RJ (2007). Algoritmo con estimación de distribuciones con cópula gaussiana. Bachelor's thesis, University of Havana, Cuba.
Demarta S, McNeil AJ (2005). The t Copula and Related Copulas. International Statistical Review, 73(1), 111–129.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Larrañaga P, Etxeberria R, Lozano JA, Peña JM (1999). Optimization by Learning and Simulation of Bayesian and Gaussian Networks. Technical Report EHU-KZAA-IK-4/99, University of the Basque Country.
Larrañaga P, Etxeberria R, Lozano JA, Peña JM (2000). Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks. In Proceedings of the Workshop in Optimization by Building and Using Probabilistic Models in the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 201–204.
Rousseeuw P, Molenberghs G (1993). Transformation of Nonpositive Semidefinite Correlation Matrices. Communications in Statistics: Theory and Methods, 22, 965–984.
Soto M, Ochoa A, Arderí RJ (2007). Gaussian Copula Estimation of Distribution Algorithm. Technical Report ICIMAF 2007-406, Institute of Cybernetics, Mathematics and Physics, Cuba. ISSN 0138-8916.
setMethod("edaTerminate", "EDA", edaTerminateEval) setMethod("edaReport", "EDA", edaReportSimple) UMDA <- CEDA(copula = "indep", margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) UMDA@name <- "Univariate Marginal Distribution Algorithm" GCEDA <- CEDA(copula = "normal", margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) GCEDA@name <- "Gaussian Copula Estimation of Distribution Algorithm" resultsUMDA <- edaRun(UMDA, fSphere, rep(-600, 5), rep(600, 5)) resultsGCEDA <- edaRun(GCEDA, fSphere, rep(-600, 5), rep(600, 5)) show(resultsUMDA) show(resultsGCEDA)
setMethod("edaTerminate", "EDA", edaTerminateEval) setMethod("edaReport", "EDA", edaReportSimple) UMDA <- CEDA(copula = "indep", margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) UMDA@name <- "Univariate Marginal Distribution Algorithm" GCEDA <- CEDA(copula = "normal", margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) GCEDA@name <- "Gaussian Copula Estimation of Distribution Algorithm" resultsUMDA <- edaRun(UMDA, fSphere, rep(-600, 5), rep(600, 5)) resultsGCEDA <- edaRun(GCEDA, fSphere, rep(-600, 5), rep(600, 5)) show(resultsUMDA) show(resultsGCEDA)
Base class of all the classes that implement EDAs in the package. This is a virtual class, no object may be created from it.
name
:Object of class character
.
Name of the EDA.
parameters
:Object of class list
.
Parameters of the EDA.
signature(eda = "EDA")
: Seeding method.
Default: edaSeedUniform
.
signature(eda = "EDA")
: Selection method.
Default: edaSelectTruncation
.
signature(eda = "EDA")
: Local optimization method.
Default: edaOptimizeDisabled
.
signature(eda = "EDA")
: Replacement method.
Default: edaReplaceComplete
.
signature(eda = "EDA")
: Reporting method.
Default: edaReportDisabled
.
signature(eda = "EDA")
: Termination method.
Default: edaTerminateMaxGen
.
signature(object = "EDA")
: Print a textual
representation of the EDA.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Determine the critical population size using a bisection method.
edaCriticalPopSize(eda, f, lower, upper, fEval, fEvalTol, totalRuns = 30, successRuns = totalRuns, lowerPop = 2, upperPop = NA, stopPercent = 10, verbose = FALSE)
edaCriticalPopSize(eda, f, lower, upper, fEval, fEvalTol, totalRuns = 30, successRuns = totalRuns, lowerPop = 2, upperPop = NA, stopPercent = 10, verbose = FALSE)
eda |
|
f |
Objective function. |
lower |
Lower bounds of the variables of the objective function. |
upper |
Upper bounds of the variables of the objective function. |
fEval |
Optimum value of the objective function. |
fEvalTol |
A run is considered successful if the difference between
|
totalRuns |
Total number of runs. |
successRuns |
Required number of successfully runs. |
lowerPop |
Lower bound of the initial interval for the population. |
upperPop |
Upper bound of the initial interval for the population. |
stopPercent |
Stop percent. |
verbose |
Print progress information. |
This function determines the minimum population size required by the EDA to
reach the value fEval
of the objective function in successRuns
runs out of a total of totalRuns
independent runs (critical
population size).
The population size is determined using a bisection method starting with the
interval delimited by lowerPop
and upperPop
. The bisection
procedure stops when the estimated population size is less than
stopPercent
percent away from the critical population size. If either
lowerPop
or upperPop
is not specified, the algorithm will
determine an initial interval based on the value of the popSize
parameter and then continue using the bisection method.
See (Pelikan 2005) for a pseudocode of a similar algorithm.
Either NULL
if the critical population size was not determined or
an EDAResults
instance with the results of the runs
of the EDA using the critical population size.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Pelikan M (2005). Hierarchical Bayesian Optimization Algorithm. Toward a New Generation of Evolutionary Algorithms. Springer-Verlag.
setMethod("edaReport", "EDA", edaReportDisabled) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateEval, edaTerminateMaxEvals)) UMDA <- CEDA(copula = "indep", margin = "norm", fEval = 0, fEvalTol = 1e-03, maxEvals = 10000) UMDA@name <- "Univariate Marginal Distribution Algorithm" results <- edaCriticalPopSize(UMDA, fSphere, rep(-600, 10), rep(600, 10), 0, 1e-03, totalRuns = 30, successRuns = 30, lowerPop = 50, upperPop = 100, verbose = TRUE) show(results) summary(results)
setMethod("edaReport", "EDA", edaReportDisabled) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateEval, edaTerminateMaxEvals)) UMDA <- CEDA(copula = "indep", margin = "norm", fEval = 0, fEvalTol = 1e-03, maxEvals = 10000) UMDA@name <- "Univariate Marginal Distribution Algorithm" results <- edaCriticalPopSize(UMDA, fSphere, rep(-600, 10), rep(600, 10), 0, 1e-03, totalRuns = 30, successRuns = 30, lowerPop = 50, upperPop = 100, verbose = TRUE) show(results) summary(results)
Execute independent runs.
edaIndepRuns(eda, f, lower, upper, runs, verbose = FALSE)
edaIndepRuns(eda, f, lower, upper, runs, verbose = FALSE)
eda |
|
f |
Objective function. |
lower |
Lower bounds of the variables of the objective function. |
upper |
Upper bounds of the variables of the objective function. |
runs |
Number of runs. |
verbose |
Print information after each run and a final summary. |
An EDAResults
instance.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
setMethod("edaReport", "EDA", edaReportSimple) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateMaxGen, edaTerminateEval)) DVEDA <- VEDA(vine = "DVine", copulas = c("normal"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, maxGens = 50, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" results <- edaIndepRuns(DVEDA, fSphere, rep(-600, 5), rep(600, 5), 5) show(results) summary(results)
setMethod("edaReport", "EDA", edaReportSimple) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateMaxGen, edaTerminateEval)) DVEDA <- VEDA(vine = "DVine", copulas = c("normal"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, maxGens = 50, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" results <- edaIndepRuns(DVEDA, fSphere, rep(-600, 5), rep(600, 5), 5) show(results) summary(results)
Methods for the edaOptimize
generic function.
edaOptimizeDisabled(eda, gen, pop, popEval, f, lower, upper)
edaOptimizeDisabled(eda, gen, pop, popEval, f, lower, upper)
eda |
|
gen |
Generation. |
pop |
Matrix with one row for each solution in the population. |
popEval |
Vector with the evaluation of each solution in |
f |
Objective function. |
lower |
Lower bounds of the variables of the objective function. |
upper |
Upper bounds of the variables of the objective function. |
Local optimization methods improve the solutions sampled by the search distribution. These methods can also be used to implement repairing strategies for constrained problems in which the simulated solutions may be unfeasible and some strategy to repair these solutions is available.
The following local optimization methods are implemented.
edaOptimizeDisabled
Disable local optimization. This is
the default method of the edaOptimize
generic function.
A list
with the following components.
pop |
Matrix with one row for each solution in the optimized population. |
popEval |
Vector with the evaluation of each solution in |
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Methods for the edaReplace
generic function.
edaReplaceComplete(eda, gen, pop, popEval, sampledPop, sampledEval) edaReplaceRTR(eda, gen, pop, popEval, sampledPop, sampledEval)
edaReplaceComplete(eda, gen, pop, popEval, sampledPop, sampledEval) edaReplaceRTR(eda, gen, pop, popEval, sampledPop, sampledEval)
eda |
|
gen |
Generation. |
pop |
Matrix with one row for each solution in the population. |
popEval |
Vector with the evaluation of each solution in |
sampledPop |
Matrix with one row for each solution sampled in the current generation. |
sampledEval |
Vector with the evaluation of the candidate solutions
in |
Replacement methods combine the candidate solutions sampled in the current generation with the candidate solutions from the population of the previous generation. The following replacement methods are implemented.
edaReplaceComplete
The population sampled in the current
generation completely replaces the population of the previous generation.
This is the default method of the edaReplace
generic function.
edaReplaceRTR
Restricted Tournament Replacement is a niching
method that can be used to promote the preservation of alternative candidate
solutions. See (Pelikan 2005) for a pseudocode of the algorithm implemented
here. The parameter windowSize
specifies the window size (default
value: min(ncol(pop), nrow(pop) / 2)
).
A list
with the following components.
pop |
Matrix with one row for each solution in the new population. |
popEval |
Vector with the evaluation of each solution in |
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Methods for the edaReport
generic function.
edaReportDisabled(eda, gen, fEvals, model, pop, popEval) edaReportSimple(eda, gen, fEvals, model, pop, popEval) edaReportDumpPop(eda, gen, fEvals, model, pop, popEval) edaReportDumpSelectedPop(eda, gen, fEvals, model, pop, popEval) edaReportCombined(...)
edaReportDisabled(eda, gen, fEvals, model, pop, popEval) edaReportSimple(eda, gen, fEvals, model, pop, popEval) edaReportDumpPop(eda, gen, fEvals, model, pop, popEval) edaReportDumpSelectedPop(eda, gen, fEvals, model, pop, popEval) edaReportCombined(...)
eda |
|
gen |
Generation. |
fEvals |
Evaluations of the objective function. |
model |
Model learned in the current generation. |
pop |
Matrix with one row for each solution in the population. |
popEval |
Vector with the evaluation of each solution in |
... |
Functions that implement reporting methods. |
Reporting methods provide progress information during the execution of the EDA. The following reporting methods are implemented.
edaReportDisabled
Disable reporting progress. This is the
default method of the edaReport
generic function.
edaReportSimple
Print one line at each generation with the number of generations, and the minimum, mean and standard deviation of the evaluation of the candidate solutions in the population.
edaReportDumpPop
Save the population at each generation
in a different plain-text file in the current working directory.
The names of the files are pop_1.txt
, pop_2.txt
,
and so on.
edaReportDumpSelectedPop
Save the selected population at
each generation in a different plain-text file in the current working
directory. The names of the files are sel_1.txt
, sel_2.txt
,
and so on.
edaReportCombined
Execute all the reporting methods specified
in ...
.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Results of a run of an EDA. Objects are created by calling the
edaRun
function.
eda
:Object of class EDA
.
f
:Object of class function
. Objective function.
lower
:Object of class numeric
. Lower bounds of
the variables of the objective function.
upper
:Object of class numeric
. Upper bounds of
the variables of the objective function.
numGens
:Object of class numeric
. Number of
generations.
fEvals
:Object of class numeric
. Number of
evaluations of the objective function.
bestEval
:Object of class numeric
. Best evaluation
of the objective function.
bestSol
:Object of class numeric
. Best solution.
cpuTime
:Object of class numeric
. Run time of the
algorithm in seconds.
signature(object = "EDAResult")
: Prints the results.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Results of a sequence of independent runs of an EDA. This class is just a
wrapper for a list
object containing EDAResult
instances. Objects are created by calling the edaIndepRuns
function.
signature(object = "EDAResults")
: Prints a table with
the results.
signature(object = "EDAResults")
: Prints a summary
of the results.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Main loop of an EDA.
edaRun(eda, f, lower, upper)
edaRun(eda, f, lower, upper)
eda |
|
f |
Objective function. |
lower |
Lower bounds of the variables of the objective function. |
upper |
Upper bounds of the variables of the objective function. |
EDAs are implemented using S4 classes with generic functions for its main
parts: seeding (edaSeed
), selection (edaSelect
),
learning (edaLearn
), sampling (edaSample
), replacement
(edaReplace
), local optimization (edaOptimize
),
termination (edaTerminate
), and reporting
(edaReport
). The following pseudocode illustrates the interactions
between all the generic functions. It is a simplified version of the
implementation of the edaRun
function.
gen <- 0 fEvals <- 0 terminate <- FALSE while (!terminate) { gen <- gen + 1 if (gen == 1) { model <- NULL pop <- edaSeed(lower, upper) # Set popEval to the evaluation of each solution in pop. # Update fEvals. r <- edaOptimize(gen, pop, popEval, f, lower, upper) pop <- r$pop; popEval <- r$popEval } else { s <- edaSelect(gen, pop, popEval) selectedPop <- pop[s, ]; selectedEval <- popEval[s] model <- edaLearn(gen, model, selectedPop, selectedEval, lower, upper) sampledPop <- edaSample(gen, model, lower, upper) # Set sampledEval to the evaluation of each solution # in sampledPop. Update fEvals. r <- edaOptimize(gen, sampledPop, sampledEval, f, lower, upper) sampledPop <- r$pop; sampledEval <- r$popEval r <- edaReplace(gen, pop, popEval, sampledPop, sampledEval) pop <- r$pop; popEval <- r$popEval } edaReport(gen, fEvals, model, pop, popEval) terminate <- edaTerminate(gen, fEvals, pop, popEval) }
An EDAResult
instance.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
setMethod("edaReport", "EDA", edaReportSimple) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateMaxGen, edaTerminateEval)) DVEDA <- VEDA(vine = "DVine", copulas = c("normal"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, maxGens = 50, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" result <- edaRun(DVEDA, fSphere, rep(-600, 5), rep(600, 5)) show(result)
setMethod("edaReport", "EDA", edaReportSimple) setMethod("edaTerminate", "EDA", edaTerminateCombined(edaTerminateMaxGen, edaTerminateEval)) DVEDA <- VEDA(vine = "DVine", copulas = c("normal"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, maxGens = 50, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" result <- edaRun(DVEDA, fSphere, rep(-600, 5), rep(600, 5)) show(result)
Methods for the edaSeed
generic function.
edaSeedUniform(eda, lower, upper)
edaSeedUniform(eda, lower, upper)
eda |
|
lower |
Lower bounds of the variables of the objective function. |
upper |
Upper bounds of the variables of the objective function. |
Seeding methods create the initial population. The length of the lower
and upper
vectors determine the number of variables of the objective
function. The following seeding methods are implemented.
edaSeedUniform
Sample each variable from a continuous uniform
distribution in the interval determined by lower
and upper
.
The parameter popSize
sets the number of solutions in the population
(default value: 100
). This is the default method of the
edaSeed
generic function.
A matrix with one column for each variable of the objective function and one row for each solution in the population.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Methods for the edaSelect
generic function.
edaSelectTruncation(eda, gen, pop, popEval) edaSelectTournament(eda, gen, pop, popEval)
edaSelectTruncation(eda, gen, pop, popEval) edaSelectTournament(eda, gen, pop, popEval)
eda |
|
gen |
Generation. |
pop |
Matrix with one row for each solution in the population. |
popEval |
Vector with the evaluation of each solution in |
Selection methods determine the solutions to be modeled by the search distribution (selected population). These solutions are usually the most promising solutions of the population. The following selection methods are implemented.
edaSelectTruncation
In truncation selection, the
100 * truncFactor
percent of the solutions with the best evaluation
in the population are selected. The parameter truncFactor
specifies
the truncation factor (default value: 0.3
). This is the default
method of the edaSelect
generic function.
edaSelectTournament
In tournament selection, a group of
solutions are randomly picked from the population and the best one is
selected. This process is repeated as many times as needed to complete
the selected population. The parameter tournamentSize
specifies
the number of solutions randomly picked from the population (default
value: 2
), selectionSize
specifies the size of the selected
population (default value: nrow(pop)
), and replacement
specifies whether to sample with replacement or not (default value:
TRUE
).
An integer
vector with the indexes of the solutions selected
from pop
.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Pelikan M (2005). Hierarchical Bayesian Optimization Algorithm. Toward a New Generation of Evolutionary Algorithms. Springer-Verlag.
Methods for the edaTerminate
generic function.
edaTerminateMaxGen(eda, gen, fEvals, pop, popEval) edaTerminateMaxEvals(eda, gen, fEvals, pop, popEval) edaTerminateEval(eda, gen, fEvals, pop, popEval) edaTerminateEvalStdDev(eda, gen, fEvals, pop, popEval) edaTerminateCombined(...)
edaTerminateMaxGen(eda, gen, fEvals, pop, popEval) edaTerminateMaxEvals(eda, gen, fEvals, pop, popEval) edaTerminateEval(eda, gen, fEvals, pop, popEval) edaTerminateEvalStdDev(eda, gen, fEvals, pop, popEval) edaTerminateCombined(...)
eda |
|
gen |
Generation. |
fEvals |
Evaluations of the objective function. |
pop |
Matrix with one row for each solution in the population. |
popEval |
Vector with the evaluation of each solution in |
... |
Functions that implement termination methods. |
Termination methods decide when to stop the main loop of the EDA. The following termination methods are implemented.
edaTerminateMaxGen
Stop when a maximum number of generations
has been reached. The parameter maxGen
specifies the number of
generations (default value: 100
). This is the default
method of the edaTerminate
generic function.
edaTerminateMaxEvals
Stop when a maximum number of evaluations
of the objective function has been reached. The parameter maxEvals
specifies the number of evaluations (default value: 1000
.)
edaTerminateEval
Stop when a given value of the objective
function has been reached. The parameters fEval
(default value:
0
) and fEvalTol
(default value: 1e-06
) set the value
of the objective function and the tolerance, respectively.
edaTerminateEvalStdDev
Stop when the standard deviation of
the evaluation of the solutions in the population is less than the value
given by the parameter fEvalStdDev
(default value: 1e-02
)
.
edaTerminateCombined
Evaluate all the termination criteria
specified in ...
and stop if (at least) one of them returns
TRUE
.
A logical
value that indicates if the algorithm should stop.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Functions that implement marginal distributions.
fnorm(x, lower, upper) ftruncnorm(x, lower, upper) fkernel(x, lower, upper) pkernel(q, X, h) qkernel(p, X, h) ftrunckernel(x, lower, upper) ptrunckernel(q, a, b, X, h) qtrunckernel(p, a, b, X, h)
fnorm(x, lower, upper) ftruncnorm(x, lower, upper) fkernel(x, lower, upper) pkernel(q, X, h) qkernel(p, X, h) ftrunckernel(x, lower, upper) ptrunckernel(q, a, b, X, h) qtrunckernel(p, a, b, X, h)
x , q
|
Vector of quantiles. |
lower , a
|
Lower bound of the variable. |
upper , b
|
Upper bound of the variable. |
p |
Vector of probabilities |
X |
Observations of the variable. |
h |
Bandwidth of the kernel. |
The functions fnorm
, pnorm
, and qnorm
implement the normal marginal distributions for EDAs with the margin
parameter set to "norm"
. The fnorm
function fits the parameters,
it returns a list
object with the mean (mean
component) and
the standard deviation (sd
component). These components determine the
values of the corresponding arguments of the pnorm
and
qnorm
functions.
The functions ftruncnorm
, ptruncnorm
, and
qtruncnorm
implement the normal marginal distributions for
EDAs with the margin
parameter set to "truncnorm"
. The
ftruncnorm
function fits the parameters, it returns a list
object with the lower and upper bounds (a
and b
components,
respectively), the mean (mean
component) and the standard deviation
(sd
component). These components determine the values of the
corresponding arguments of the ptruncnorm
and
qtruncnorm
functions.
The functions fkernel
, pkernel
, and qkernel
implement the kernel-smoothed empirical marginal distributions for EDAs
with the margin
parameter set to "kernel"
. The fkernel
function fits the marginal distribution, it returns a list
object with
the observations of the variable (X
component) and the bandwidth of a
Gaussian kernel density estimator (h
component). The bandwidth is
calculated using Silverman's rule of thumb (see bw.nrd0
).
The components of the list
object returned by fkernel
are used
as aditional arguments in the pkernel
and qkernel
functions.
The pkernel
function calculates the empirical cumulative distribution
function. The expression of the empirical cumulative distribution function
includes the modification used in the copula context to avoid problems
in the boundary of the interval. The
qkernel
function uses
the Gaussian kernel density estimator fitted by fkernel
to evaluate the
inverse of the cumulative distribution function, following the procedure
suggested in (Azzalini 1981).
The functions ftrunckernel
, ptrunckernel
, and qtrunckernel
implement the truncated kernel-smoothed empirical marginal distributions for
EDAs with the margin
parameter set to "trunckernel"
. The
distribution is computed from the corresponding kernel-smoothed empirical
marginal distributions without truncation by following the procedure
illustrated in (Nadarajah and Kotz 2006).
Azzalini, A (1981) A Note on the Estimation of a Distribution Function and Quantiles by a Kernel Method, Biometrika, 68, 326-328.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Nadarajah S, Kotz S (2006) R Programs for Computing Truncated Distributions, Journal of Statistical Software, 16, Code Snippet 2.
pnorm
,
qnorm
,
ptruncnorm
,
qtruncnorm
.
Implementation of a group of well-known benchmark problems typically used to evaluate the performance of EDAs and other numerical optimization algorithms for unconstrained global optimization.
fAckley(x) fGriewank(x) fRosenbrock(x) fRastrigin(x) fSphere(x) fSummationCancellation(x)
fAckley(x) fGriewank(x) fRosenbrock(x) fRastrigin(x) fSphere(x) fSummationCancellation(x)
x |
A vector to be evaluated in the function. |
The definition of the functions for a vector
is given below.
Ackley, Griewank, Rastrigin, Rosenbrock, and Sphere are minimization
problems. Summation Cancellation is originally a maximization problem but it
is expressed here as a minimization problem. Ackley, Griewank, Rastrigin and
Sphere have their global optimum at
with evaluation 0. Rosenbrock has its global optimum at
with evaluation 0. Summation Cancellation
has its global optimum at
with evaluation
. See (Bengoetxea et al. 2002; Bosman and Thierens 2006;
Chen and Lim 2008) for a description of the functions.
The value of the function for the vector x
.
Bengoetxea E, Miquélez T, Lozano JA, Larrañaga P (2002). Experimental Results in Function Optimization with EDAs in Continuous Domain. In P Larrañaga, JA Lozano (eds.), Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp. 181–194. Kluwer Academic Publisher
Bosman PAN, Thierens D (2006). Numerical Optimization with Real-Valued Estimation of Distribution Algorithms. In M Pelikan, K Sastry, E Cantú-Paz (eds.), Scalable Optimization via Probabilistic Modeling. From Algorithms to Applications, pp. 91–120. Springer-Verlag.
Chen Yp, Lim MH (eds.) (2008). Linkage in Evolutionary Computation. Springer-Verlag. ISBN 978-3-540-85067-0.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
all.equal(fAckley(rep(0, 10)), 0) all.equal(fGriewank(rep(0, 10)), 0) all.equal(fRastrigin(rep(0, 10)), 0) all.equal(fRosenbrock(rep(1, 10)), 0) all.equal(fSphere(rep(0, 10)), 0) all.equal(fSummationCancellation(rep(0, 10)), -1e+05)
all.equal(fAckley(rep(0, 10)), 0) all.equal(fGriewank(rep(0, 10)), 0) all.equal(fRastrigin(rep(0, 10)), 0) all.equal(fRosenbrock(rep(1, 10)), 0) all.equal(fSphere(rep(0, 10)), 0) all.equal(fSummationCancellation(rep(0, 10)), -1e+05)
Extends the EDA
class to implement EDAs based on vines.
Objects are created by calling the VEDA
function.
Vine EDAs (VEDAs) are a class of EDAs (Soto and Gonzalez-Fernandez 2010; Gonzalez-Fernandez 2011) that model the search distributions using vines. Vines are graphical models that represent high-dimensional distributions by decomposing the multivariate density into conditional bivariate copulas, unconditional bivariate copulas, and one-dimensional densities (Joe 1996; Bedford and Cooke 2001; Aas et al. 2009; Kurowicka and Cooke 2006). In particular, VEDAs are based on the simplified pair-copula construction (Hobaek Haff et al. 2010). Similarly to Copula EDAs, these algorithms estimate separately the univariate marginal distributions and the dependence structure from the selected population. Instead of representing the dependence structure using a single multivariate copula, VEDAs can model a rich variety of dependencies by combining bivariate copulas that belong to different families. The following instances of VEDA are implemented.
C-vine EDA (CVEDA), that models the search distributions using C-vines (Soto and Gonzalez-Fernandez 2010; Gonzalez-Fernandez 2011).
D-vine EDA (DVEDA), that models the search distributions using D-vines (Soto and Gonzalez-Fernandez 2010; Gonzalez-Fernandez 2011).
Greedy heuristics based on the empirical Kendall's tau between each variable in the selected population are used to determine the structure of the C-vines and D-vines in CVEDA and DVEDA, respectively (Brechmann 2010).
The selection of each bivariate copula in both decompositions starts with an independence test (Genest and Rémillard 2004; Genest et al. 2007). The independence copula is selected if there is not enough evidence against the null hypothesis of independence at a given significance level. In the other case, the parameters of a group of candidate copulas are estimated and the one that minimizes a distance to the empirical copula is selected. A Cramér-von Mises statistic is used as the measure of distance (Genest and Rémillard 2008).
The parameters of all the candidate copulas but the t copula are estimated using the inversion of Kendall's tau. In the case of the t copula, the correlation coefficient is computed using the inversion of Kendall's tau and the degrees of freedom are estimated by maximum likelihood with the correlation parameter fixed (Demarta and McNeil 2005).
To simplify the construction of the vines the truncation strategy presented in (Brechmann 2010) is applied. If a vine is truncated at a given tree, all the copulas in the subsequent trees are assumed to be product copulas. By default, a model selection procedure based on AIC (Akaike Information Criterion) is applied to detect the required number of trees, but it is also possible to base the selection on BIC (Bayesian Information Criterion) or completely disable the truncation strategy. Also, a maximum number of dependence trees of the vine can be set, which may be helpful when dealing with high-dimensional problems.
The following parameters are recognized by the functions that implement
the edaLearn
and edaSample
methods for the
VEDA
class.
vine
Vine type. Supported values are: "CVine"
(Canonical vine) and "DVine"
(D-vine). Default value:
"DVine"
.
trees
Maximum number of dependence trees of the vine. The default is to estimate a full vine.
truncMethod
Method used to automatically truncate the vine if
enough dependence is captured in the first trees. Supported values
are: "AIC"
, "BIC"
and ""
(no truncation). Default
value: "AIC"
.
copulas
A character
vector specifying the candidate
copulas. Supported values are: "normal"
(normal copula),
"t"
(t copula), "clayton"
(Clayton copula),
"frank"
(Frank copula), and "gumbel"
(Gumbel copula).
Default value: c("normal")
.
indepTestSigLevel
Significance level of the independence
test. Default value: 0.01
.
margin
Marginal distributions. If this argument is "xxx"
,
the algorithm will search for three functions named fxxx
.
pxxx
and qxxx
to fit each marginal distribution
and evaluate the cumulative distribution function and its inverse,
respectively. Default value: "norm"
.
popSize
Population size. Default value: 100
.
name
:See the documentation of the slot in the
EDA
class.
parameters
:See the documentation of the slot in the
EDA
class.
signature(eda = "CEDA")
: The edaLearnCEDA
function.
signature(eda = "CEDA")
: The edaSampleCEDA
function.
Aas K, Czado C, Frigessi A, Bakken H (2009). Pair-Copula Constructions of Multiple Dependence. Insurance: Mathematics and Economics, 44(2), 182–198.
Bedford T, Cooke RM (2001). Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines. Annals of Mathematics and Artificial Intelligence, 32(1), 245–268.
Brechmann EC (2010). Truncated and Simplified Regular Vines and Their Applications. Diploma thesis, University of Technology, Munich, Germany.
Demarta S, McNeil AJ (2005). The t Copula and Related Copulas. International Statistical Review, 73(1), 111–129.
Genest C, Rémillard B (2004). Tests of Independence or Randomness Based on the Empirical Copula Process. Test, 13(2), 335–369.
Genest C, Quessy JF, Rémillard B (2007). Asymptotic Local Efficiency of Cramér-von mises Tests for Multivariate Independence. The Annals of Statistics, 35, 166–191.
Genest C, Rémillard B (2008). Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Semiparametric Models. Annales de l'Institut Henri Poincaré: Probabilités et Statistiques, 44, 1096–1127.
Gonzalez-Fernandez Y (2011). Algoritmos con estimación de distribuciones basados en cópulas y vines. Bachelor's thesis, University of Havana, Cuba.
Gonzalez-Fernandez Y, Soto M (2014). copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas. Journal of Statistical Software, 58(9), 1-34. http://www.jstatsoft.org/v58/i09/.
Hobaek Haff I, Aas K, Frigessi A (2010). On the Simplified Pair-Copula Construction — Simply Useful or Too Simplistic? Journal of Multivarite Analysis, 101, 1145–1152.
Joe H (1996). Families of -variate Distributions with Given Margins
and
Bivariate Dependence Parameters. In L Röschendorf,
B Schweizer, MD Taylor (eds.), Distributions with fixed marginals
and related topics, pp. 120–141.
Soto M, Gonzalez-Fernandez Y (2010). Vine Estimation of Distribution Algorithms. Technical Report ICIMAF 2010-561, Institute of Cybernetics, Mathematics and Physics, Cuba. ISSN 0138-8916.
setMethod("edaTerminate", "EDA", edaTerminateEval) setMethod("edaReport", "EDA", edaReportSimple) CVEDA <- VEDA(vine = "CVine", copulas = c("normal", "clayton", "frank", "gumbel"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) CVEDA@name <- "C-vine Estimation of Distribution Algorithm" DVEDA <- VEDA(vine = "DVine", copulas = c("normal", "clayton", "frank", "gumbel"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" resultsCVEDA <- edaRun(CVEDA, fSphere, rep(-600, 5), rep(600, 5)) resultsDVEDA <- edaRun(DVEDA, fSphere, rep(-600, 5), rep(600, 5)) show(resultsCVEDA) show(resultsDVEDA)
setMethod("edaTerminate", "EDA", edaTerminateEval) setMethod("edaReport", "EDA", edaReportSimple) CVEDA <- VEDA(vine = "CVine", copulas = c("normal", "clayton", "frank", "gumbel"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) CVEDA@name <- "C-vine Estimation of Distribution Algorithm" DVEDA <- VEDA(vine = "DVine", copulas = c("normal", "clayton", "frank", "gumbel"), indepTestSigLevel = 0.01, margin = "norm", popSize = 200, fEval = 0, fEvalTol = 1e-03) DVEDA@name <- "D-vine Estimation of Distribution Algorithm" resultsCVEDA <- edaRun(CVEDA, fSphere, rep(-600, 5), rep(600, 5)) resultsDVEDA <- edaRun(DVEDA, fSphere, rep(-600, 5), rep(600, 5)) show(resultsCVEDA) show(resultsDVEDA)