# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "boostmtree" in publications use:' type: software license: GPL-3.0-or-later title: 'boostmtree: Boosted Multivariate Trees for Longitudinal Data' version: 1.5.1 identifiers: - type: doi value: 10.32614/CRAN.package.boostmtree abstract: Implements Friedman's gradient descent boosting algorithm for modeling longitudinal response using multivariate tree base learners. Longitudinal response could be continuous, binary, nominal or ordinal. A time-covariate interaction effect is modeled using penalized B-splines (P-splines) with estimated adaptive smoothing parameter. Although the package is design for longitudinal data, it can handle cross-sectional data as well. Implementation details are provided in Pande et al. (2017), Mach Learn . authors: - family-names: Kogalur given-names: Udaya B. email: ubk@kogalur.com - family-names: Ishwaran given-names: Hemant email: hemant.ishwaran@gmail.com - family-names: Pande given-names: Amol email: amoljpande@gmail.com preferred-citation: type: manual title: Boosted Multivariate Trees for Longitudinal Data authors: - family-names: Ishwaran given-names: H. - family-names: Pande given-names: A. - family-names: Kogalur given-names: U.B. publisher: name: manual year: '2022' notes: R package version 1.5.1 url: https://cran.r-project.org/package=boostmtree repository: https://cranhaven.r-universe.dev commit: 67d41fad8be84f7226ff7613ceef56115352b3b2 url: https://ishwaran.org/ishwaran.html date-released: '2022-03-09' contact: - family-names: Kogalur given-names: Udaya B. email: ubk@kogalur.com