
Package: boostmtree (via r-universe)
January 19, 2025

Version 1.5.1

Date 2022-03-09

Title Boosted Multivariate Trees for Longitudinal Data

Author Hemant Ishwaran <hemant.ishwaran@gmail.com>, Amol Pande

<amoljpande@gmail.com>

Maintainer Udaya B. Kogalur <ubk@kogalur.com>

Depends R (>= 3.5.0)

Imports randomForestSRC (>= 2.9.0), parallel, splines, nlme

Description Implements Friedman's gradient descent boosting algorithm
for modeling longitudinal response using multivariate tree base
learners. Longitudinal response could be continuous, binary,
nominal or ordinal. A time-covariate interaction effect is
modeled using penalized B-splines (P-splines) with estimated
adaptive smoothing parameter. Although the package is design
for longitudinal data, it can handle cross-sectional data as
well. Implementation details are provided in Pande et al.
(2017), Mach Learn <DOI:10.1007/s10994-016-5597-1>.

License GPL (>= 3)

URL https://ishwaran.org/ishwaran.html

NeedsCompilation no

Date/Publication 2022-03-10 09:40:05 UTC

Additional_repositories https://cranhaven.r-universe.dev

Config/pak/sysreqs libglpk-dev make libicu-dev libxml2-dev libx11-dev

Repository https://cranhaven.r-universe.dev

RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev

RemoteRef package/boostmtree

RemoteSha 67d41fad8be84f7226ff7613ceef56115352b3b2

RemoteSubdir boostmtree

1

https://doi.org/10.1007/s10994-016-5597-1
https://ishwaran.org/ishwaran.html
https://cranhaven.r-universe.dev

2 boostmtree-package

Contents

boostmtree-package . 2
AF . 3
boostmtree . 4
boostmtree.news . 10
marginalPlot . 11
partialPlot . 13
plot.boostmtree . 16
predict.boostmtree . 17
print.boostmtree . 21
simLong . 22
spirometry . 24
vimp.boostmtree . 25
vimpPlot . 26

Index 29

boostmtree-package Boosted multivariate trees for longitudinal data.

Description

Multivariate extension of Friedman’s (2001) gradient descent boosting method for modeling longi-
tudinal response using multivariate tree base learners. Longitudinal response could be continuous,
binary, nominal or ordinal. Covariate-time interactions are modeled using penalized B-splines (P-
splines) with estimated adaptive smoothing parameter.

Package Overview

This package contains many useful functions and users should read the help file in its entirety for
details. However, we briefly mention several key functions that may make it easier to navigate and
understand the layout of the package.

1. boostmtree

This is the main entry point to the package. It grows a multivariate tree using user supplied
training data. Trees are grown using the randomForestSRC R-package.

2. predict.boostmtree (predict)
Used for prediction. Predicted values are obtained by dropping the user supplied test data
down the grow forest. The resulting object has class (rfsrc, predict).

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

AF 3

References

Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. of
Statist., 5:1189-1232.

Friedman J.H. (2002). Stochastic gradient boosting. Comp. Statist. Data Anal., 38(4):367–378.

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

See Also

partialPlot, plot.boostmtree, predict.boostmtree, print.boostmtree, simLong

AF Atrial Fibrillation Data

Description

Atrial Fibrillation (AF) data is obtained from a randomized trial to study the effect of surgical
ablation as a treatment option for AF among patients with persistent and long-standing persistent
AF who requires mitral valve surgery. Patients were randomized into two groups: mitral valve
surgery with ablation and mitral valve surgery without ablation. Patients in the ablation group were
further randomized into two types of procedure: pulmonary vain isolation (PVI) and biatrial maze
procedure. These patients were followed weekly for a period of 12 months. The primary outcome of
the study is the presence/absence of AF (binary longitudinal response). Data includes 228 patients.
From 228 patients, 7949 AF measurements are available with average of 35 measurements per
patient.

Format

A list containing four elements:

1. The 84 patient variables (features).

2. Time points (time).

3. Unique patient identifier (id).

4. Presence or absence of AF (y).

References

Gillinov A. M., Gelijns A.C., Parides M.K., DeRose J.J.Jr., Moskowitz~A.J. et al. Surgical ab-
lation of atrial fibrillation during mitral valve surgery. The New England Journal of Medicine
372(15):1399–1408, 2015.

Examples

data(AF, package = "boostmtree")

4 boostmtree

boostmtree Boosted multivariate trees for longitudinal data

Description

Multivariate extension of Friedman’s gradient descent boosting method for modeling continuous or
binary longitudinal response using multivariate tree base learners (Pande et al., 2017). Covariate-
time interactions are modeled using penalized B-splines (P-splines) with estimated adaptive smooth-
ing parameter.

Usage

boostmtree(x,
tm,
id,
y,
family = c("Continuous","Binary","Nominal","Ordinal"),
y_reference = NULL,
M = 200,
nu = 0.05,
na.action = c("na.omit","na.impute")[2],
K = 5,
mtry = NULL,
nknots = 10,
d = 3,
pen.ord = 3,
lambda,
rho,
lambda.max = 1e6,
lambda.iter = 2,
svd.tol = 1e-6,
forest.tol = 1e-3,
verbose = TRUE,
cv.flag = FALSE,
eps = 1e-5,
mod.grad = TRUE,
NR.iter = 3,
...)

Arguments

x Data frame (or matrix) containing the x-values. Rows must be duplicated to
match the number of time points for an individual. That is, if individual i has
n[i] outcome y-values, then there must be n[i] duplicate rows of i’s x-value.

tm Vector of time values, one entry for each row in x.

id Unique subject identifier, one entry for each row in x.

boostmtree 5

y Observed y-value, one entry for each row in x.

family Family of the response variable y. Use any one from {"Continuous", "Bi-
nary","Nominal","Ordinal"} based on the scale of y.

y_reference Set this value, among the unique y values when family == "Nominal". If
NULL, lowest value, among unique y values, is used.

M Number of boosting iterations

nu Boosting regularization parameter. A value in (0,1].

na.action Remove missing values (casewise) or impute it. Default is to impute the missign
values.

K Number of terminal nodes used for the multivariate tree learner.

mtry Number of x variables selected randomly for tree fitting. Default is use all x
variables.

nknots Number of knots used for the B-spline for modeling the time interaction effect.

d Degree of the piecewise B-spline polynomial (no time effect is fit when d < 1).

pen.ord Differencing order used to define the penalty with increasing values implying
greater smoothness.

lambda Smoothing (penalty) parameter used for B-splines with increasing values asso-
ciated with increasing smoothness/penalization. If missing, or non-positive, the
value is estimated adaptively using a mixed models approach.

rho If missing, rho is estimated, else, use the rho value specified in this argument.

lambda.max Tolerance used for adaptively estimated lambda (caps it). For experts only.

lambda.iter Number of iterations used to estimate lambda (only applies when lambda is not
supplied and adaptive smoothing is employed).

svd.tol Tolerance value used in the SVD calculation of the penalty matrix. For experts
only.

forest.tol Tolerance used for forest weighted least squares solution. Experimental and for
experts only.

verbose Should verbose output be printed?

cv.flag Should in-sample cross-validation (CV) be used to determine optimal stopping
using out of bag data?

eps Tolerance value used for determining the optimal M. Applies only if cv.flag =
TRUE. For experts only.

mod.grad Use a modified gradient? See details below.

NR.iter Number of Newton-Raphson iteration. Applied for family = {Binary","Nominal","Ordinal"}.

... Further arguments passed to or from other methods.

Details

Each individual has observed y-values, over possibly different time points, with possibly differing
number of time points. Given y, the time points, and x, the conditional mean time profile of y is es-
timated using gradient boosting in which the gradient is derived from a criterion function involving

6 boostmtree

a working variance matrix for y specified as an equicorrelation matrix with parameter rho multi-
plied by a variance parameter phi. Multivariate trees are used for base learners and weighted least
squares is used for solving the terminal node optimization problem. This provides solutions to the
core parameters of the algorithm. For ancillary parameters, a mixed-model formulation is used to
estimate the smoothing parameter associated with the B-splines used for the time-interaction effect,
although the user can manually set the smoothing parameter as well. Ancillary parameters rho and
phi are estimated using GLS (generalized least squares).

In the original boostmtree algorithm (Pande et al., 2017), the equicorrelation parameter rho is used
in two places in the algorithm: (1) for growing trees using the gradient, which depends upon rho;
and (2) for solving the terminal node optimization problem which also uses the gradient. However,
Pande (2017) observed that setting rho to zero in the gradient used for growing trees improved
performance of the algorithm, especially in high dimensions. For this reason the default setting
used in this algorithm is to set rho to zero in the gradient for (1). The rho in the gradient for (2) is
not touched. The option mod.grad specifies whether a modified gradient is used in the tree growing
process and is TRUE by default.

By default, trees are grown from a bootstrap sample of the data – thus the boosting method employed
here is a modified example of stochastic gradient descent boosting (Friedman, 2002). Stochastic
descent often improves performance and has the added advantage that out-of-sample data (out-of-
bag, OOB) can be used to calculate variable importance (VIMP).

The package implements R-side parallel processing by replacing the R function lapply with mclapply
found in the parallel package. You can set the number of cores accessed by mclapply by issuing
the command options(mc.cores = x), where x is the number of cores. The options command
can also be placed in the users .Rprofile file for convenience. You can, alternatively, initialize the
environment variable MC_CORES in your shell environment.

As an example, issuing the following options command uses all available cores for R-side parallel
processing:

options(mc.cores=detectCores())

However, be cautious when setting mc.cores. This can create not only high CPU usage but also
high RAM usage, especially when using functions partialPlot and predict.

The method can impute the missing observations in x (covariates) using on the fly imputation.
Details regarding can be found in the randomForestSRC package. If missing values are present in
the tm, id or y, the user should either impute or delete these values before executing the function.

Finally note cv.flag can be used for an in-sample cross-validated estimate of prediction error.
This is used to determine the optimized number of boosting iterations Mopt. The final mu predictor
is evaluated at this value and is cross-validated. The prediction error returned via err.rate is
standardized by the overall standard deviation of y.

Value

An object of class (boostmtree, grow) with the following components:

x The x-values, but with only one row per individual (i.e. duplicated rows are
removed). Values sorted on id.

xvar.names X-variable names.

time List with each component containing the time points for a given individual. Val-
ues sorted on id.

boostmtree 7

id Sorted subject identifier.

y List with each component containing the observed y-values for a given individ-
ual. Values sorted on id.

Yorg For family == "Nominal" or family == "Ordinal", this provides the response in
list-format where each element coverted the response into the binary response.

family Family of y.

ymean Overall mean of y-values for all individuals. If family = "Binary", ymean = 0.

ysd Overall standard deviation of y-values for all individuals. If family = "Binary",
ysd = 1.

na.action Remove missing values or impute?

n Total number of subjects.

ni Number of repeated measures for each subject.

n.Q Number of class labels for non-continuous response.

Q_set Class labels for the non-continuous response.

y.unq Unique y values for the non-continous response.

y_reference Reference value for family == "Nominal".

tm.unq Unique time points.

gamma List of length M, with each component containing the boosted tree fitted values.

mu List with each component containing the estimated mean values for an individ-
ual. That is, each component contains the estimated time-profile for an individ-
ual. When in-sample cross-validation is requested using cv.flag=TRUE, the
estimated mean is cross-validated and evaluated at the optimal number of itera-
tions Mopt. If the family == "Nominal" or family == "Ordinal", mu will have a
higher level of list to accommodate binary responses generated from nominal or
ordinal response.

Prob_class For family == "Ordinal", this provides individual probabilty rather than cumu-
lative probabilty.

lambda Smoothing parameter. Results provided in vector or matrix form, depending on
whether family == c("Continuous","Binary") or family == c("Nominal", "Ordi-
nal").

phi Variance parameter.Results provided in vector or matrix form, depending on
whether family == c("Continuous","Binary") or family == c("Nominal", "Ordi-
nal").

rho Correlation parameter.Results provided in vector or matrix form, depending on
whether family == c("Continuous","Binary") or family == c("Nominal", "Ordi-
nal").

baselearner List of length M containing the base learners.

membership List of length M, with each component containing the terminal node membership
for a given boosting iteration.

X.tm Design matrix for all the unique time points.

D Design matrix for each subject.

8 boostmtree

d Degree of the piecewise B-spline polynomial.

pen.ord Penalization difference order.

K Number of terminal nodes.

M Number of boosting iterations.

nu Boosting regularization parameter.

ntree Number of trees.

cv.flag Whether in-sample CV is used or not?

err.rate In-sample standardized estimate of l1-error and RMSE.

rmse In-sample standardized RMSE at optimized M.

Mopt The optimized M.

gamma.i.list Estimate of gamma obtained from in-sample CV if cv.flag = TRUE, else
NULL

forest.tol Forest tolerance value (needed for prediction).

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. of
Statist., 5:1189-1232.

Friedman J.H. (2002). Stochastic gradient boosting. Comp. Statist. Data Anal., 38(4):367–378.

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

Pande A. (2017). Boosting for longitudinal data. Ph.D. Dissertation, Miller School of Medicine,
University of Miami.

See Also

marginalPlot partialPlot, plot.boostmtree, predict.boostmtree, print.boostmtree, simLong,
vimpPlot

Examples

##--
synthetic example (Response y is continuous)
0.8 correlation, quadratic time with quadratic interaction
##---
#simulate the data (use a small sample size for illustration)
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL

#basic boosting call (M set to a small value for illustration)
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,family = "Continuous",M = 20)

#print results

boostmtree 9

print(boost.grow)

#plot.results
plot(boost.grow)

##--
synthetic example (Response y is binary)
0.8 correlation, quadratic time with quadratic interaction
##---
#simulate the data (use a small sample size for illustration)
dta <- simLong(n = 50, N = 5, rho =.80, model = 2, family = "Binary")$dtaL

#basic boosting call (M set to a small value for illustration)
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,family = "Binary", M = 20)

#print results
print(boost.grow)

#plot.results
plot(boost.grow)

Not run:
##--
Same synthetic example as above with continuous response
but with in-sample cross-validation estimate for RMSE
##---
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL
boost.cv.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,

family = "Continuous", M = 300, cv.flag = TRUE)
plot(boost.cv.grow)
print(boost.cv.grow)

##--
spirometry data (Response is continuous)
##--
data(spirometry, package = "boostmtree")

#boosting call: cubic B-splines with 15 knots
spr.obj <- boostmtree(spirometry$features, spirometry$time, spirometry$id, spirometry$y,

family = "Continuous",M = 100, nu = .025, nknots = 15)
plot(spr.obj)

##--
Atrial Fibrillation data (Response is binary)
##--
data(AF, package = "boostmtree")

#boosting call: cubic B-splines with 15 knots
AF.obj <- boostmtree(AF$feature, AF$time, AFid, AFy,

family = "Binary",M = 100, nu = .025, nknots = 15)
plot(AF.obj)

10 boostmtree.news

##--
sneaky way to use boostmtree for (univariate) regression: boston housing
##--

if (library("mlbench", logical.return = TRUE)) {

assemble the data
data(BostonHousing)
x <- BostonHousing; x$medv <- NULL
y <- BostonHousing$medv
trn <- sample(1:nrow(x), size = nrow(x) * (2 / 3), replace = FALSE)

run boosting in univariate mode
o <- boostmtree(x = x[trn,], y = y[trn],family = "Continuous")
o.p <- predict(o, x = x[-trn,], y = y[-trn])
print(o)
plot(o.p)

run boosting in univariate mode to obtain RMSE and vimp
o.cv <- boostmtree(x = x, y = y, M = 100,family = "Continuous",cv.flag = TRUE)
print(o.cv)
plot(o.cv)

}

End(Not run)

boostmtree.news Show the NEWS file

Description

Show the NEWS file of the boostmtree package.

Usage

boostmtree.news(...)

Arguments

... Further arguments passed to or from other methods.

Value

None.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

marginalPlot 11

marginalPlot Marginal plot analysis

Description

Marginal plot of x against the unadjusted predicted y. This is mainly used to obtain marginal
relationships between x and the unadjusted predicted y. Marginal plots have a faster execution
compared to partial plots (Friedman, 2001).

Usage

marginalPlot(object,
xvar.names,
tm.unq,
subset,
plot.it = FALSE,
path_saveplot = NULL,
Verbose = TRUE,
...)

Arguments

object A boosting object of class (boostmtree, grow).

xvar.names Names of the x-variables to be used. By default, all variables are plotted.

tm.unq Unique time points used for the plots of x against y. By default, the deciles of
the observed time values are used.

subset Vector indicating which rows of the x-data to be used for the analysis. The
default is to use the entire data.

plot.it Should plots be displayed? If xvar.names is a vector with more than one vari-
able name, then instead of displaying, plot is stored as "MarginalPlot.pdf" in the
location specified by path_saveplot.

path_saveplot Provide the location where plot should be saved. By default the plot will be
saved at temporary folder.

Verbose Display the path where the plot is saved?

... Further arguments passed to or from other methods.

Details

Marginal plot of x values specified by xvar.names against the unadjusted predicted y-values over
a set of time points specified by tm.unq. Analysis can be restricted to a subset of the data using
subset.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

12 marginalPlot

References

Friedman J.H. Greedy function approximation: a gradient boosting machine, Ann. of Statist.,
5:1189-1232, 2001.

Examples

Not run:
##--
Synthetic example (Response is continuous)
High correlation, quadratic time with quadratic interaction
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay, family = "Continuous", M = 300)

#plot results
#x1 has a linear main effect
#x2 is quadratic with quadratic time trend
marginalPlot(boost.grow, "x1",plot.it = TRUE)
marginalPlot(boost.grow, "x2",plot.it = TRUE)

#Plot of all covariates. The plot will be stored as the "MarginalPlot.pdf"
in the current working directory.
marginalPlot(boost.grow,plot.it = TRUE)

##--
Synthetic example (Response is binary)
High correlation, quadratic time with quadratic interaction
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Binary")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay, family = "Binary", M = 300)

#plot results
#x1 has a linear main effect
#x2 is quadratic with quadratic time trend
marginalPlot(boost.grow, "x1",plot.it = TRUE)
marginalPlot(boost.grow, "x2",plot.it = TRUE)

#Plot of all covariates. The plot will be stored as the "MarginalPlot.pdf"
in the current working directory.
marginalPlot(boost.grow,plot.it = TRUE)

##--
spirometry data
##--
data(spirometry, package = "boostmtree")

partialPlot 13

#boosting call: cubic B-splines with 15 knots
spr.obj <- boostmtree(spirometry$features, spirometry$time, spirometry$id, spirometry$y,

family = "Continuous",M = 300, nu = .025, nknots = 15)

#marginal plot of double-lung group at 5 years
dltx <- marginalPlot(spr.obj, "AGE", tm.unq = 5, subset = spr.objxDOUBLE==1,plot.it = TRUE)

#marginal plot of single-lung group at 5 years
sltx <- marginalPlot(spr.obj, "AGE", tm.unq = 5, subset = spr.objxDOUBLE==0,plot.it = TRUE)

#combine the two plots
dltx <- dltx[[2]][[1]]
sltx <- sltx[[2]][[1]]
plot(range(c(dltx[[1]][, 1], sltx[[1]][, 1])), range(c(dltx[[1]][, -1], sltx[[1]][, -1])),

xlab = "age", ylab = "predicted y", type = "n")
lines(dltx[[1]][, 1][order(dltx[[1]][, 1])], dltx[[1]][, -1][order(dltx[[1]][, 1])],

lty = 1, lwd = 2, col = "red")
lines(sltx[[1]][, 1][order(sltx[[1]][, 1])], sltx[[1]][, -1][order(sltx[[1]][, 1])],

lty = 1, lwd = 2, col = "blue")
legend("topright", legend = c("DLTx", "SLTx"), lty = 1, fill = c(2,4))

End(Not run)

partialPlot Partial plot analysis

Description

Partial dependence plot of x against adjusted predicted y.

Usage

partialPlot(object,
M = NULL,
xvar.names,
tm.unq,
xvar.unq = NULL,
npts = 25,
subset,
prob.class = FALSE,
conditional.xvars = NULL,
conditional.values = NULL,
plot.it = FALSE,
Variable_Factor = FALSE,
path_saveplot = NULL,
Verbose = TRUE,
useCVflag = FALSE,
...)

14 partialPlot

Arguments

object A boosting object of class (boostmtree, grow).
M Fixed value for the boosting step number. If NULL, then use Mopt if it is avail-

able from the object, else use M
xvar.names Names of the x-variables to be used. By default, all variables are plotted.
tm.unq Unique time points used for the plots of x against y. By default, the deciles of

the observed time values are used.
xvar.unq Unique values used for the partial plot. Default is NULL in which case unique

values are obtained uniformaly based on the range of variable. Values must be
provided using list with same length as lenght of xvar.names.

npts Maximum number of points used for x. Reduce this value if plots are slow.
subset Vector indicating which rows of the x-data to be used for the analysis. The

default is to use the entire data.
prob.class In case of ordinal response, use class probability rather than cumulative proba-

bility.
conditional.xvars

Vector of character values indicating names of the x-variables to be used for
further conditioning (adjusting) the predicted y values. Variable names should
be different from xvar.names.

conditional.values

Vector of values taken by the variables from conditional.xvars. The length of
the vector should be same as the length of the vector for conditional.xvars,
which means only one value per conditional variable.

plot.it Should plots be displayed?
Variable_Factor

Default is FALSE. Use TRUE if the variable specified in xvar.names is a factor.
path_saveplot Provide the location where plot should be saved. By default the plot will be

saved at temporary folder.
Verbose Display the path where the plot is saved?
useCVflag Should the predicted value be based on the estimate derived from oob sample?
... Further arguments passed to or from other methods.

Details

Partial dependence plot (Friedman, 2001) of x values specified by xvar.names against the adjusted
predicted y-values over a set of time points specified by tm.unq. Analysis can be restricted to a
subset of the data using subset. Further conditioning can be imposed using conditional.xvars.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Friedman J.H. Greedy function approximation: a gradient boosting machine, Ann. of Statist.,
5:1189-1232, 2001.

partialPlot 15

Examples

Not run:
##--
Synthetic example (Response is continuous)
high correlation, quadratic time with quadratic interaction
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,family = "Continuous",M = 300)

#plot results
#x1 has a linear main effect
#x2 is quadratic with quadratic time trend
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x1",plot.it = TRUE)
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x2",plot.it = TRUE)

#partial plot using "x2" as the conditional variable
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x1",

conditional.xvar = "x2", conditional.values = 1,plot.it = TRUE)
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x1",

conditional.xvar = "x2", conditional.values = 2,plot.it = TRUE)

##--
Synthetic example (Response is binary)
high correlation, quadratic time with quadratic interaction
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Binary")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,family = "Binary",M = 300)

#plot results
#x1 has a linear main effect
#x2 is quadratic with quadratic time trend
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x1",plot.it = TRUE)
pp.obj <- partialPlot(object = boost.grow, xvar.names = "x2",plot.it = TRUE)

##--
spirometry data
##--
data(spirometry, package = "boostmtree")

#boosting call: cubic B-splines with 15 knots
spr.obj <- boostmtree(spirometry$features, spirometry$time, spirometry$id, spirometry$y,

family = "Continuous",M = 300, nu = .025, nknots = 15)

#partial plot of double-lung group at 5 years
dltx <- partialPlot(object = spr.obj, xvar.names = "AGE",

tm.unq = 5, subset=spr.objxDOUBLE==1,plot.it = TRUE)

16 plot.boostmtree

#partial plot of single-lung group at 5 years
sltx <- partialPlot(object = spr.obj, xvar.names = "AGE",

tm.unq = 5, subset=spr.objxDOUBLE==0,plot.it = TRUE)

#combine the two plots: we use lowess smoothed values
dltx <- dltx$l.obj[[1]]
sltx <- sltx$l.obj[[1]]
plot(range(c(dltx[, 1], sltx[, 1])), range(c(dltx[, -1], sltx[, -1])),

xlab = "age", ylab = "predicted y (adjusted)", type = "n")
lines(dltx[, 1], dltx[, -1], lty = 1, lwd = 2, col = "red")
lines(sltx[, 1], sltx[, -1], lty = 1, lwd = 2, col = "blue")
legend("topright", legend = c("DLTx", "SLTx"), lty = 1, fill = c(2,4))

End(Not run)

plot.boostmtree Plot Summary Analysis

Description

Plot summary analysis of the boosting analysis.

Usage

S3 method for class 'boostmtree'
plot(x, use.rmse = TRUE, path_saveplot = NULL, Verbose = TRUE, ...)

Arguments

x An object of class (boostmtree, grow) or (boostmtree, predict).

use.rmse Report performance values in terms of standardized root-mean-squared-error
(RMSE) or mean-squared-error (MSE)? Default is standardized RMSE.

path_saveplot Provide the location where plot should be saved. By default the plot will be
saved at temporary folder.

Verbose Display the path where the plot is saved?

... Further arguments passed to or from other methods.

Details

Plot summary output, including predicted values and residuals. Also plots various parameters
against the number of boosting iterations.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

predict.boostmtree 17

References

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

predict.boostmtree Prediction for Boosted multivariate trees for longitudinal data.

Description

Obtain predicted values. Also returns test-set performance if the test data contains y-outcomes.

Usage

S3 method for class 'boostmtree'
predict(object,

x,
tm,
id,
y,
M,
eps = 1e-5,
useCVflag = FALSE,
...)

Arguments

object A boosting object of class (boostmtree, grow).

x Data frame (or matrix) containing test set x-values. Rows must be duplicated
to match the number of time points for an individual. If missing, the training x
values are used and tm, id and y are not required and no performance values are
returned.

tm Time values for each test set individual with one entry for each row of x. Op-
tional, but if missing, the set of unique time values from the training values are
used for each individual and no test-set performance values are returned.

id Unique subject identifier, one entry for each row in x. Optional, but if missing,
each individual is assumed to have a full time-profile specified by the unique
time values from the training data.

y Test set y-values, with one entry for each row in x.

M Fixed value for the boosting step number. Leave this empty to determine the
optimized value obtained by minimizing test-set error.

eps Tolerance value used for determining the optimal M. For experts only.

useCVflag Should the predicted value be based on the estimate derived from oob sample?

... Further arguments passed to or from other methods.

18 predict.boostmtree

Details

The predicted time profile and performance values are obtained for test data from the boosted object
grown on the training data.

R-side parallel processing is implemented by replacing the R function lapply with mclapply found
in the parallel package. You can set the number of cores accessed by mclapply by issuing the
command options(mc.cores = x), where x is the number of cores. As an example, issuing the
following options command uses all available cores:

options(mc.cores=detectCores())

However, this can create high RAM usage, especially when using function partialPlot which
calls the predict function.

Note that all performance values (for example prediction error) are standardized by the overall
y-standard deviation. Thus, reported RMSE (root-mean-squared-error) is actually standardized
RMSE. Values are reported at the optimal stopping time.

Value

An object of class (boostmtree, predict), which is a list with the following components:

boost.obj The original boosting object.

x The test x-values, but with only one row per individual (i.e. duplicated rows are
removed).

time List with each component containing the time points for a given test individual.

id Sorted subject identifier.

y List containing the test y-values.

Y y-values, in the list-format, where nominal or ordinal Response is converted into
the binary response.

family Family of y.

ymean Overall mean of y-values for all individuals. If family = "Binary", "Nominal"
or "Ordinal", ymean = 0.

ysd Overall standard deviation of y-values for all individuals. If family = "Binary",
"Nominal" or "Ordinal", ysd = 1.

xvar.names X-variable names.

K Number of terminal nodes.

n Total number of subjects.

ni Number of repeated measures for each subject.

n.Q Number of class labels for non-continuous response.

Q_set Class labels for the non-continuous response.

y.unq Unique y values for the non-continous response.

nu Boosting regularization parameter.

D Design matrix for each subject.

df.D Number of columns of D.

predict.boostmtree 19

time.unq Vector of the unique time points.

baselearner List of length M containing the base learners.

gamma List of length M, with each component containing the boosted tree fitted values.

membership List of length M, with each component containing the terminal node membership
for a given boosting iteration.

mu Estimated mean profile at the optimized M.

Prob_class For family == "Ordinal", this provides individual probabilty rather than cumu-
lative probabilty.

muhat Extrapolated mean profile to all unique time points evaluated at the the opti-
mized M.

Prob_hat_class Extrapolated Prob_class to all unique time points evaluated at the the opti-
mized M.

err.rate Test set standardized l1-error and RMSE.

rmse Test set standardized RMSE at the optimized M.

Mopt The optimized M.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

See Also

plot.boostmtree, print.boostmtree

Examples

Not run:
##--
Synthetic example (Response is continuous)
##
High correlation, quadratic time with quadratic interaction
largish number of noisy variables
##
Illustrates how modified gradient improves performance
also compares performance to ideal and well specified linear models
##--

simulate the data
simulation 2: main effects (x1, x3, x4), quad-time-interaction (x2)
dtaO <- simLong(n = 100, ntest = 100, model = 2, family = "Continuous", q = 25)

save the data as both a list and data frame
dtaL <- dtaO$dtaL

20 predict.boostmtree

dta <- dtaO$dta

get the training data
trn <- dtaO$trn

save formulas for linear model comparisons
f.true <- dtaO$f.true
f.linr <- "y~g(x1+x2+x3+x4+x1*time+x2*time+x3*time+x4*time)"

modified tree gradient (default)
o.1 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn],dtaL$y[trn],

family = "Continuous",M = 350)
p.1 <- predict(o.1, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

non-modified tree gradient (nmtg)
o.2 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],

family = "Continuous",M = 350, mod.grad = FALSE)
p.2 <- predict(o.2, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

set rho = 0
o.3 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],

family = "Continuous",M = 350, rho = 0)
p.3 <- predict(o.3, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

##rmse values compared to generalized least squares (GLS)
##for true model and well specified linear models (LM)
cat("true LM :", boostmtree:::gls.rmse(f.true,dta,trn),"\n")
cat("well specified LM :", boostmtree:::gls.rmse(f.linr,dta,trn),"\n")
cat("boostmtree :", p.1$rmse,"\n")
cat("boostmtree (nmtg):", p.2$rmse,"\n")
cat("boostmtree (rho=0):", p.3$rmse,"\n")

##predicted value plots
plot(p.1)
plot(p.2)
plot(p.3)

##--
Synthetic example (Response is binary)
##
High correlation, quadratic time with quadratic interaction
largish number of noisy variables
##--

simulate the data
simulation 2: main effects (x1, x3, x4), quad-time-interaction (x2)
dtaO <- simLong(n = 100, ntest = 100, model = 2, family = "Binary", q = 25)

save the data as both a list and data frame

print.boostmtree 21

dtaL <- dtaO$dtaL
dta <- dtaO$dta

get the training data
trn <- dtaO$trn

save formulas for linear model comparisons
f.true <- dtaO$f.true
f.linr <- "y~g(x1+x2+x3+x4+x1*time+x2*time+x3*time+x4*time)"

modified tree gradient (default)
o.1 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn],dtaL$y[trn],

family = "Binary",M = 350)
p.1 <- predict(o.1, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

End(Not run)

print.boostmtree Print Summary Output

Description

Print summary output from the boosting analysis.

Usage

S3 method for class 'boostmtree'
print(x, ...)

Arguments

x An object of class (boostmtree, grow) or (boostmtree,predict).

... Further arguments passed to or from other methods.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

22 simLong

simLong Simulate longitudinal data

Description

Simulates longitudinal data with continuous or binary response from models with increasing com-
plexity of covariate-time interactions.

Usage

simLong(n,
ntest = 0,
N = 5,
rho = 0.8,
type = c("corCompSym", "corAR1", "corSymm", "iid"),
model = c(0, 1, 2, 3),
family = c("Continuous","Binary"),
phi = 1,
q = 0,
...)

Arguments

n Requested training sample size.
ntest Requested test sample size.
N Parameter controlling number of time points per subject.
rho Correlation parameter.
type Type of correlation matrix.
model Requested simulation model.
family Family of response y. Use any one from {"Continuous", "Binary"} based on the

scale of y.
phi Variance of measurement error.
q Number of zero-signal variables (i.e., variables unrelated to y).
... Further arguments passed to or from other methods.

Details

Simulates longitudinal data with 3 main effects and (possibly) a covariate-time interaction. Com-
plexity of the model is specified using the option model:

1. model=0: Linear with no covariate-time interactions.
2. model=1: Linear covariate-time interaction.
3. model=2: Quadratic time-quadratic covariate interaction.
4. model=3: Quadratic time-quadratic two-way covariate interaction.

For details see Pande et al. (2017).

simLong 23

Value

An invisible list with the following components:

dtaL List containing the simulated data in the following order: features, time, id
and y.

dta Simulated data given as a data frame.

trn Index of id values identifying the training data.

f.true Formula of the simulation model.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Pande A., Li L., Rajeswaran J., Ehrlinger J., Kogalur U.B., Blackstone E.H., Ishwaran H. (2017).
Boosted multivariate trees for longitudinal data, Machine Learning, 106(2): 277–305.

Examples

Not run:
##--
Response is continuous
##--

set the number of boosting iterations
M <- 500

simulation 0: only main effects (x1, x3, x4)
dta <- simLong(n = 100, ntest = 100, model = 0, family = "Continuous", q = 5)
trn <- dta$trn
dtaL <- dta$dtaL
dta <- dta$dta
obj.0 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],

family = "Continuous", M = M)
pred.0 <- predict(obj.0, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

##--
Response is binary
##--

set the number of boosting iterations
M <- 500

simulation 0: only main effects (x1, x3, x4)
dta <- simLong(n = 100, ntest = 100, model = 0, family = "Binary", q = 5)
trn <- dta$trn
dtaL <- dta$dtaL
dta <- dta$dta

24 spirometry

obj.0 <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],
family = "Binary", M = M)

pred.0 <- predict(obj.0, dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn], dtaL$y[-trn])

End(Not run)

spirometry Spirometry Data

Description

Data consists of 9471 longitudinal evaluations of forced 1-second expiratory volume (FEV1-percentage
of predicted) after lung transplant from 509 patients who underwent lung transplant (LTx) at the
Cleveland Clinic. Twenty three patient/procedure variables were collected at the time of the trans-
plant. The major objectives are to evaluate the temporal trend of FEV1 after LTx, and to identify
factors associated with post-LTx FEV1 and assessing the differences in the trends after Single LTx
versus Double LTx.

Format

A list containing four elements:

1. The 23 patient variables (features).

2. Time points (time).

3. Unique patient identifier (id).

4. FEV1-outcomes (y).

References

Mason D.P., Rajeswaran J., Li L., Murthy S.C., Su J.W., Pettersson G.B., Blackstone E.H. Effect of
changes in postoperative spirometry on survival after lung transplantation. J. Thorac. Cardiovasc.
Surg., 144:197-203, 2012.

Examples

data(spirometry, package = "boostmtree")

vimp.boostmtree 25

vimp.boostmtree Variable Importance

Description

Calculate VIMP score for each of the individual covariates or a joint VIMP of multiple covariates.

Usage

vimp.boostmtree(object,
x.names = NULL,
joint = FALSE)

Arguments

object A boosting object of class (boostmtree, grow) or class (boostmtree, predict).

x.names Names of the x-variables for which VIMP is requested. If NULL, VIMP is
calcuated for all the covariates

joint Estimate individual VIMP for each covariate from x.names or a joint VIMP for
all covariates combine.

Details

Variable Importance (VIMP) is calcuated for each of the covariates individually or a joint VIMP is
calulated for all the covariates specfied in x.names.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

References

Friedman J.H. Greedy function approximation: a gradient boosting machine, Ann. of Statist.,
5:1189-1232, 2001.

Examples

Not run:
##--
Synthetic example (Response is continuous)
VIMP is based on in-sample CV using out of bag data
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,

family = "Continuous", M = 300,cv.flag = TRUE)

26 vimpPlot

vimp.grow <- vimp.boostmtree(object = boost.grow,x.names=c("x1","x2"),joint = FALSE)
vimp.joint.grow <- vimp.boostmtree(object = boost.grow,x.names=c("x1","x2"),joint = TRUE)

##--
Synthetic example (Response is continuous)
VIMP is based on test data
##---
#simulate the data
dtaO <- simLong(n = 100, ntest = 100, N = 5, rho =.80, model = 2, family = "Continuous")

save the data as both a list and data frame
dtaL <- dtaO$dtaL
dta <- dtaO$dta

get the training data
trn <- dtaO$trn

#basic boosting call
boost.grow <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],

family = "Continuous", M = 300)
boost.pred <- predict(boost.grow,dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn],

dtaL$y[-trn])
vimp.pred <- vimp.boostmtree(object = boost.pred,x.names=c("x1","x2"),joint = FALSE)
vimp.joint.pred <- vimp.boostmtree(object = boost.pred,x.names=c("x1","x2"),joint = TRUE)

End(Not run)

vimpPlot Variable Importance (VIMP) plot

Description

Barplot displaying VIMP.

Usage

vimpPlot(vimp,
Q_set = NULL,
Time_Interaction = TRUE,
xvar.names = NULL,
cex.xlab = NULL,
ymaxlim = 0,
ymaxtimelim = 0,
subhead.cexval = 1,
yaxishead = NULL,
xaxishead = NULL,
main = "Variable Importance (%)",
col = grey(0.8),

vimpPlot 27

cex.lab = 1.5,
subhead.labels = c("Time-Interactions Effects", "Main Effects"),
ylbl = FALSE,
seplim = NULL,
eps = 0.1,
Width_Bar = 1,
path_saveplot = NULL,
Verbose = TRUE)

Arguments

vimp VIMP values.

Q_set Provide names for various levels of nominal or ordinal response.
Time_Interaction

Whether VIMP is estimated from a longitudinal data, in which case VIMP
is available for covariate and covariate-time interaction. Default is TRUE. If
FALSE, VIMP is assumed to be estimated from a cross-sectional data.

xvar.names Names of the covariates. If NULL, names are assigned as x1, x2,...,xp.

cex.xlab Magnification of the names of the covariates above (and below) the barplot.

ymaxlim By default, we use the range of the vimp values for the covariates for the ylim.
If one wants to extend the ylim, add the amount with which the ylim will extend
above.

ymaxtimelim By default, we use the range of the vimp values for the covariates-time for the
ylim. If one wants to extend the ylim, add the amount with which the ylim will
extend below. Argument only works for the longitudinal setting.

subhead.cexval Magnification of the subhead.labels. Argument only works for the longitudi-
nal setting.

yaxishead This represent a vector with two values which are points on the y-axis. Corre-
sponding to the values, the lables for subhead.labels is shown. First argument
corresponds to covariate-time interaction, whereas second argument is for the
main effect. Argument only works for the longitudinal setting.

xaxishead This represent a vector with two values which are points on the x-axis. Corre-
sponding to the values, the lables for subhead.labels is shown. First argument
corresponds to covariate-time interaction, whereas second argument is for the
main effect. Argument only works for the longitudinal setting.

main Main title for the plot.

col Color of the plot.

cex.lab Magnification of the x and y lables.

subhead.labels Labels corresponding to the plot. Default is "Time-Interactions Effects" for the
barplot below x-axis, and "Main Effects" for the barplot above x-axis.

ylbl Should labels for the sub-headings be shown on left side of the y-axis.

seplim if ylbl is TRUE, the distance between the lables of the sub-headings.

eps Amount of gap between the top of the barplot and variable names.

Width_Bar Width of the barplot.

28 vimpPlot

path_saveplot Provide the location where plot should be saved. By default the plot will be
saved at temporary folder.

Verbose Display the path where the plot is saved?

Details

Barplot displaying VIMP. If the analysis is for the univariate case, VIMP is displayed above the
x-axis. If the analysis is for the longitudinal case, VIMP for covariates (main effects) are shown
above the x-axis while VIMP for covariate-time interactions (time interaction effects) are shown
below the x-axis. In either case, negative vimp value is set to zero.

Author(s)

Hemant Ishwaran, Amol Pande and Udaya B. Kogalur

Examples

Not run:
##--
Synthetic example
high correlation, quadratic time with quadratic interaction
##---
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL

#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dtaid, dtay,

family = "Continuous",M = 300, cv.flag = TRUE)
vimp.grow <- vimp.boostmtree(object = boost.grow)

VIMP plot
vimpPlot(vimp = vimp.grow, ymaxlim = 20, ymaxtimelim = 20,

xaxishead = c(3,3), yaxishead = c(65,65),
cex.xlab = 1, subhead.cexval = 1.2)

End(Not run)

Index

∗ boosting
boostmtree, 4
predict.boostmtree, 17

∗ datasets
AF, 3
spirometry, 24

∗ documentation
boostmtree.news, 10

∗ package
boostmtree-package, 2

∗ plot
marginalPlot, 11
partialPlot, 13
plot.boostmtree, 16
vimp.boostmtree, 25
vimpPlot, 26

∗ predict
predict.boostmtree, 17

∗ print
print.boostmtree, 21

∗ simulation
simLong, 22

∗ variable selection
simLong, 22

AF, 3

boostmtree, 2, 4
boostmtree-package, 2
boostmtree.news, 10

marginalPlot, 8, 11

partialPlot, 3, 8, 13
plot.boostmtree, 3, 8, 16, 19
predict.boostmtree, 2, 3, 8, 17
print.boostmtree, 3, 8, 19, 21

simLong, 3, 8, 22
spirometry, 24

vimp.boostmtree, 25
vimpPlot, 8, 26

29

	boostmtree-package
	AF
	boostmtree
	boostmtree.news
	marginalPlot
	partialPlot
	plot.boostmtree
	predict.boostmtree
	print.boostmtree
	simLong
	spirometry
	vimp.boostmtree
	vimpPlot
	Index

