Package 'aPEAR'

Title: Advanced Pathway Enrichment Analysis Representation
Description: Simplify pathway enrichment analysis results by detecting clusters of similar pathways and visualizing it as an enrichment network, where nodes and edges describe the pathways and similarity between them, respectively. This reduces the redundancy of the overlapping pathways and helps to notice the most important biological themes in the data (Kerseviciute and Gordevicius (2023) <doi:10.1101/2023.03.28.534514>).
Authors: Ieva Kerseviciute [aut, cre] , Juozas Gordevicius [ths] , VUGENE, LLC [cph, fnd]
Maintainer: Ieva Kerseviciute <[email protected]>
License: MIT + file LICENSE
Version: 1.0.0
Built: 2025-01-10 07:36:38 UTC
Source: https://github.com/cranhaven/cranhaven.r-universe.dev

Help Index


Default method configuration for aPEAR

Description

A list with parameters for customizing how the clusters within the enrichment data are calculated.

Usage

aPEAR.methods

Format

An object of class aPEAR.methods.config of length 5.

Details

similarity: method for calculating similarity matrix between the pathways. Available methods: 'jaccard', 'cosine' and 'correlation'

cluster: method for detecting pathway clusters. Available methods: 'markov', 'hier' and 'spectral'. Using 'spectral' method requires that you have the Spectrum package installed

clusterName: method for selecting cluster names. Available methods: 'pagerank', 'hits', 'nes' and 'pval'. The 'pagerank' and 'hits' algorithms analyse the connectivity within the cluster to detect the most important node. The 'nes' and 'pval' methods use enrichment results to determine the most important node within the cluster: the 'nes' method will choose the node with the maximum absolute enrichment score value and the 'pval' method will choose the node with the lowest p-value. When using the 'nes' and 'pval' methods, please specify which column in the data to use with the clusterNameColumn parameter

clusterNameColumn: which column in the dataset should be used to select the cluster title. Required when clusterName = 'nes' and clusterName = 'pval'

minClusterSize: minimum cluster size (default: 2). Clusters with less elements than specified will be dropped

Value

an object of class aPEAR.methods.config

Examples

# Display all default methods used by aPEAR
aPEAR.methods

# Update methods to use different similarity metric
settings <- aPEAR.methods
settings$similarity <- 'cosine'
settings

Default theme configuration for aPEAR

Description

A list with parameters for customizing the theme of the enrichment network plot.

Usage

aPEAR.theme

Format

An object of class aPEAR.theme.config of length 9.

Details

colorBy: which column in the data should be used to color the nodes in the enrichment network plot (default: 'NES')

nodeSize: which column in the data should be used to get the node size for the enrichment network plot (default: 'setSize')

innerCutoff: similarity cutoff for within-cluster nodes (default: 0.1). Decreasing this value results in greater connectivity within the nodes in the same cluster. For example, innerCutoff = 0 would display all connections within the same cluster.

outerCutoff: similarity cutoff for between-cluster nodes (default: 0.5). Decreasing this value results in greater connectivity between the nodes in different clusters. For example, outerCutoff = 0 would display all connections between different clusters.

colorType: how to colour the nodes: 'nes' - will center around 0 with blue min and red max, 'pval' - will use log transform on the colorBy column and adjust color range (default: 'nes')

pCutoff: adjust p-value colouring cutoff when using colorType = 'pval' (default: -10)

drawEllipses: enable / disable ellipse drawing (default: FALSE)

fontSize: adjust cluster label font size (default: 3)

repelLabels: whether the cluster label positions should be corrected (default: FALSE)

Value

an object of class aPEAR.theme.config

Examples

# Display the default theme configuration used by aPEAR
aPEAR.theme

# Update the theme to draw ellipses
settings <- aPEAR.theme
settings$drawEllipses <- TRUE
settings

aPEAR enrichment network

Description

Creates an enrichment network plot. This function internally calls findPathClusters to obtain pathway clusters and then plotPathClusters to create the enrichment network visualization.

Usage

enrichmentNetwork(
  enrichment,
  methods = aPEAR.methods,
  theme = aPEAR.theme,
  verbose = FALSE,
  ...
)

Arguments

enrichment

a data.frame containing enrichment results

methods

object of class aPEAR.methods.config

theme

object of class aPEAR.theme.config

verbose

enable / disable log messages

...

additional parameters (see ?aPEAR.methods and ?aPEAR.theme)

Value

a ggplot2 object

See Also

?findPathClusters, ?plotPathClusters

Examples

# Load libraries
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
data(geneList)

# Perform enrichment using clusterProfiler
enrich <- gseGO(geneList, OrgDb = org.Hs.eg.db, ont = 'CC')

# Create enrichment network visualization with default parameters
enrichmentNetwork(enrich@result)

# Create enrichment network visualization with repelled labels and elipses
enrichmentNetwork(enrich@result, repelLabels = TRUE, drawEllipses = TRUE)

Find pathway clusters

Description

Calculates the clusters within the enrichment data based on pathway similarity.

Usage

findPathClusters(enrichment, methods = aPEAR.methods, verbose = FALSE, ...)

Arguments

enrichment

a data.frame containing enrichment results

methods

methods for calculating the pathway clusters within the enrichment result (object of class aPEAR.methods; default: aPEAR.methods)

verbose

enable / disable log messages (default: FALSE)

...

additional parameters (see ?aPEAR.methods)

Value

a list of two objects: sim - pathway similarity matrix; and clusters - pathway clusters

a list of clusters and similarity matrix

Examples

# Load libraries
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
data(geneList)

# Perform enrichment using clusterProfiler
enrich <- gseGO(geneList, OrgDb = org.Hs.eg.db, ont = 'CC')

# Obtain clusters within the enriched pathways using default parameters
data <- findPathClusters(enrich@result)
data$clusters

# Obtain clusters within the enriched pathways using hierarchical clustering
# and minClusterSize = 1
data <- findPathClusters(enrich@result, cluster = 'hier', minClusterSize = 1)
data$clusters

aPEAR enrichment network

Description

Creates enrichment network plot.

Usage

plotPathClusters(
  enrichment,
  sim,
  clusters,
  theme = aPEAR.theme,
  verbose = FALSE,
  ...
)

Arguments

enrichment

a data.frame containing enrichment results

sim

similarity matrix of the enriched pathways

clusters

clusters of the enriched pathways

theme

object of class aPEAR.theme.config

verbose

enable / disable log messages

...

additional parameters (see ?aPEAR.theme)

Value

a ggplot2 object

Examples

# Load libraries
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
data(geneList)

# Perform enrichment using clusterProfiler
enrich <- gseGO(geneList, OrgDb = org.Hs.eg.db, ont = 'CC')

# Obtain clusters within the enriched pathways using default parameters
data <- findPathClusters(enrich@result)

# Create the enrichment network visualization using default parameters
plotPathClusters(enrich@result, data$sim, data$clusters)

# Create the enrichment network visualization with repelled labels and elipses
plotPathClusters(enrich@result, data$sim, data$clusters, repelLabels = TRUE, drawEllipses = TRUE)