Package: Vdgraph (via r-universe)

October 23, 2024

Type Package
Title Variance Dispersion Graphs and Fraction of Design Space Plots for Response Surface Designs
Version 2.2-7
Date 2023-09-06
Author John Lawson <pre><lawsonjs17net@gmail.com></lawsonjs17net@gmail.com></pre> , with contributions from <pre>G. Vining</pre>
Maintainer John Lawson <pre><lawsonjs17net@gmail.com></lawsonjs17net@gmail.com></pre>
Description Uses a modification of the published FORTRAN code in ``A Computer Program for Generating Variance Dispersion Graphs" by G. Vining, Journal of Quality Technology, Vol. 25 No. 1 January 1993, to produce variance dispersion graphs. Also produces fraction of design space plots, and contains data frames for several minimal run response surface designs.
License GPL-2
LazyLoad yes
RoxygenNote 7.2.3
NeedsCompilation yes
Date/Publication 2023-09-08 21:30:02 UTC
Additional_repositories https://cranhaven.r-universe.dev
Repository https://cranhaven.r-universe.dev
RemoteUrl https://github.com/cranhaven/cranhaven.r-universe.dev
RemoteRef package/Vdgraph
RemoteSha fb185591f807c160d34bc2d5df253021188f361d
Contents
Vdgraph-package

2 Vdgraph-package

Vdgraph-package							•		,											•				_	•	ph	s c	and	d f	ra	ct	ioi	n c	of	de	-			
																																							18
Vdgraph	•	•	•	•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•		•	•	•	•		٠	•	•	•		•	•	•		•	•	٠	•	16
																																							15
																																							15
SCDH5																																							14
SCDH4																																							14
SCDH3																																							13
SCDH2																																							13
SCDDL5	5																																						12
mx																																							12
Hex2																																							11
FDSPlot																																							10
f																																							10
																																							9
																																							9
																																							8
																																							8
201111	•																																						7
																																							6 7
	D311A . D311B . D416A . D416B . D416C . D628A . f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph	D311A D311B D416A D416B D416C D628A f FDSPlot . Hex2 mx SCDDL5 SCDH2 . SCDH4 . SCDH4 . SCDH5 . SCDH6 . Vardsgr . Vdgraph .	D311A D311B D416A D416A D416B D628A f FDSPlot Hex2 SCDDL5 . SCDH2 SCDH4 SCDH4 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispenses	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion g	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH4 SCDH5 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graph	D311A	D311A	D311A	D311A	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graphs and fract.	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graphs and fraction	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graphs and fraction of	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graphs and fraction of	D311A D311B D416A D416B D416C D628A f FDSPlot Hex2 mx SCDDL5 SCDH2 SCDH2 SCDH3 SCDH4 SCDH5 SCDH6 Vardsgr Vdgraph This package creates variance dispersion graphs and fraction of de																					

Description

The **Vdgraph** package provides functions for creating Variance Dispersion Graphs and Fraction of Design Space Plots of a standardized response surface design stored in a matrix or a data frame.

The function Vdgraph(des) creates the variance dispersion graph of the response surface design stored in the matrix or data frame des. The function FDSPlot(des) creates the fraction of design space plot of the response surface design stored in the matrix or data frame des. Useful response surface designs are also included as matricies in the package. These include the hexagonal design for two factors Hex2, the small composite designs for 3 to 6 factors and Roquemore's hybrid designs for 3 to 6 factors. The function Compare2Vdg makes the variance dispersion graphs of two designs on the same scale for comparison.

Details

Package: Vdgraph
Type: Package
Version: 2.2-7
Date: 2023-09-08
License: GPL2.0

Dependencies:

LazyLoad: yes

Vdgraph-package 3

Packaged: 2023-09-08 19:54:07 UTC; Lawson

Built: R 3.0.2; i386-pc-mingw32; 2011-03-22 19:54:08 UTC; windows

Index:

Compare2Vdg this function makes Variance Dispersion Graphs

of two response surface designs on the same $\,$

graph for comparison

Compare2FDS this function makes fraction of design space

plots of two response surface designs on the

same graph for comparison

D310 Roquemore (1976) Hybrid design D310
D311A Roquemore (1976) Hybrid design 311A
D311B Roquemore (1976) Hybrid design D311B
D416A Roquemore (1976) Hybrid design 416A
D416B Roquemore (1976) Hybrid design D416B
D416C Roquemore (1976) Hybrid design D416C
D628A Roquemore (1976) Hybrid design D628A

FDSPlot this function makes a fraction of design space

plot of a response surface design

Hex2 Hexagonal design for two factors

SCDDL5 Draper and Lin's Small Composite Design for

five factors

SCDH2 Hartley's Small Composite Design for two

factors

SCDH3 Hartley's Small Composite Design for three

factors

SCDH4 Hartley's Small Composite Design for four

factors

SCDH5 Hartley's Small Composite Design for five

factors

SCDH6 Hartley's Small Composite Design for six

factors

Vardsgr Loads compiled fortran in shared file vdg

Vdgraph this function makes a Variance Dispersion Graph

of a response surface design

Author(s)

John Lawson lawson@byu.edu

Maintainer: John Lawson lawson@byu.edu

4 Compare2FDS

Compare2FDS	This function compares Fraction of Design Space Plots for two response surface designs.

Description

This function compares Fraction of Design Space Plots for two response surface designs with the same number of factors over the unit hypercube design space.

Usage

```
Compare2FDS(des1, des2, name1, name2, mod=2)
```

Arguments

des1	des1 is a matrix or a data frame containing the first response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
des2	des2 is a matrix or a data frame containing the second response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
name1	name1 is a character string containing a descriptive name for the first design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name1 defaults to des1
name2	name2 is a character string containing a descriptive name for the second design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name2 defaults to des2
mod	mod is the model to be represented. $0 = \text{linear model } 1 = \text{linear main effects plus linear by linear 2-factor interactions } 2 = \text{full quadratic response surface model (default.}$

Author(s)

John S. Lawson < lawson@byu.edu>

References

1.Zahran, A., Anderson-Cook, C. M. and Myers, R. H. "Fraction of Design Space to Assess Prediction Capability of Response Surface Designs" Journal of Quality Technology, Vol 35, No. 4, pp 377-386. 2003.

Compare2Vdg 5

Examples

```
data(SCDH5)
data(SCDDL5)
Compare2FDS(SCDH5, SCDDL5, "Hartley SCD-5", "Draper-Lin SCD5", mod=2)
```

Compare2Vdg this function compares Variance Dispersion Graph of two response surface designs with the same number of factors on the same scale

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a two variance dispersion graph, and then makes the plot.

Usage

Compare2Vdg(des,des2,name1,name2,ncolleg)

Arguments

des	des is a matrix or a data frame containing the first response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
des2	des2 is a matrix or a data frame containing the second response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
name1	name1 is a character string containing a descriptive name for the first design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name1 defaults to des
name2	name2 is a character string containing a descriptive name for the second design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name2 defaults to des2
ncolleg	The number of columns in the legend this can be 1 or 2

Value

vdgpl

vdgpl This is a graph containing the two Variance Dispersion Graphs, one for each

design

Note

This function calls the function Vardsgr to get the coordinates for the plot.

D310

Author(s)

```
John S. Lawson < lawson@byu.edu>
```

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Examples

```
data(SCDH5)
data(SCDDL5)
Compare2Vdg(SCDH5,SCDDL5,"Hartley's SCD-5","Draper-Lin's SCD-5 fac",ncolleg=1)
```

D310

Roquemore (1976) Hybrid design D310

Description

A This is an .rda file containing the design in a matrix.

Usage

data(D310)

Format

Three columns of independent variables

Source

source

References

D311A 7

D311A

Roquemore (1976) Hybrid design 311A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311A)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D311B

Roquemore (1976) Hybrid design D311B

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311B)

Format

Three columns of independent variables

Source

source

References

8 D416B

D416A

Roquemore (1976) Hybrid design 416A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416A)

Format

Four columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D416B

Roquemore (1976) Hybrid design D416B

Description

this is an .rda file containing the design in a matrix.

Usage

data(D416B)

Format

Four columns of independent variables

Source

source

References

D416C 9

D416C

Roquemore (1976) Hybrid design D416C

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416C)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D628A

Roquemore (1976) Hybrid design D628A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D628A)

Format

Three columns of independent variables

Source

source

References

FDSPlot

f

Calculate column means of design

Description

This function calculates means of design.

Usage

f(x)

Arguments

Χ

This is a design matrix

Value

mean

mean

This is the mean of the design x

Note

This function is called by the function Vdgraph.

Author(s)

John S. Lawson < lawson@byu.edu>

FDSPlot

This function makes a Fraction of Design Space Plot of a response surface design.

Description

This function creates a Fraction of Design Space Plot over the hypercube design space from -1 to 1 on each component.

Usage

```
FDSPlot(des, mod=2)
```

Hex2 11

Arguments

des des is a matrix or a data frame containing a response surface design in coded or

uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is

99, and the maximum number of columns is 7.

mod is the model to be represented. 0 = linear model 1 = linear main effects plus

linear by linear 2-factor interactions 2 = full quadratic response surface model

(default.

Author(s)

John S. Lawson < lawson@byu.edu>

References

1.Zahran, A., Anderson-Cook, C. M. and Myers, R. H. "Fraction of Design Space to Assess Prediction Capability of Response Surface Designs" Journal of Quality Technology, Vol 35, No. 4, pp 377-386. 2003.

Examples

data(D310)
FDSPlot(D310)

Hex2

Hexagonal design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(Hex2)

Format

Two columns of independent variables

Source

source

References

SCDDL5

mx

Calculate column maximums of design

Description

This function calculates maximums of design.

Usage

mx(x)

Arguments

Χ

This is a design matrix

Value

mean

max

This is the maximum of the design x

Note

This function is called by the function FDSPlot.

Author(s)

John S. Lawson < lawson@byu.edu>

SCDDL5

Draper and Lin's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

```
data(SCDDL5)
```

Format

Five columns of independent variables

Source

source

SCDH2

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH2

Hartley's Small Composite Design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH2)

Format

Two columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH3

Hartley's Small Composite Design for three factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH3)

Format

Three columns of independent variables

Source

source

14 SCDH5

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH4

Hartley's Small Composite Design for four factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH4)

Format

Four columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH5

Hartley's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH5)

Format

Five columns of independent variables

Source

source

SCDH6 15

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH6

Hartley's Small Composite Design for six factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH6)

Format

Six columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

Vardsgr

Loads compiled fortran in shared file vdg

Description

This function loads and runs the compiled fortran code vdg. vdg is Vining's 1999 JQT fortran code for producing variance dispersion graphs.

Usage

```
Vardsgr(ndpts, kvar1, kdv1, rdes)
```

Arguments

ndpts	This is the number of runs in the response surface design (maximum=99).
kvar1	This is the number of factors in the design matrix (maximum=6).
kdv1	This is the product of ndpts and kvar1.
rdes	This is the response surface design matrix stored as a vector of the concatenated columns of the design matrix, one column for each factor in the design.

16 Vdgraph

Value

vdgr

vdgr

This is the matrix of coordinates for the variance dispersion graph. It is stored as a vector of concatenated columns. Each column is of length 20, and there are four columns in the matrix. The first column is the radius from the center of the response surface design. The second column is the maximum variance of a predicted value, the third column is the minimum variance of a predicted value, and the fourth column is the average variance of a predicted value.

Note

This function is called by the function Vdgraph.

Author(s)

John S. Lawson < lawson@byu.edu>

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Vdgraph

this function makes a Variance Dispersion Graph of a response surface design

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a variance dispersion graph, and then makes the plot.

Usage

Vdgraph(des)

Arguments

des

des is a matrix or a data frame containing a response surface design in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.

Value

vdgpl

vdgpl This is a graph containing the Variance Dispersion Graph

Vdgraph 17

Note

This function calls the function Vardsgr to get the coordinates for the plot.

Author(s)

John S. Lawson <lawson@byu.edu>

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Examples

data(D310)
Vdgraph(D310)

Index

* datagen	FDSPlot, 10
f, 10	
mx, 12	Hex2, 11
* datasets	mv. 12
D310, 6	mx, 12
D311A, 7	SCDDL5, 12
D311B, 7	SCDH2, 13
D416A, 8	SCDH3, 13
D416B, 8	SCDH4, 14
D416C, 9	SCDH5, 14
D628A, 9	SCDH6, 15
Hex2, 11	
SCDDL5, 12	Vardsgr, 15
SCDH2, 13	Vdgraph, 16
SCDH3, 13	Vdgraph-package, 2
SCDH4, 14	
SCDH5, 14	
SCDH6, 15	
* hplot	
Compare2FDS, 4	
Compare2Vdg, 5	
FDSPlot, 10	
Vdgraph, 16	
* interface	
Vardsgr, 15	
* package	
Vdgraph-package, 2	
Compare2FDS, 4	
Compare2Vdg, 5	
D310, 6	
D311A, 7	
D311B, 7	
D416A, 8	
D416B, 8	
D416C, 9	
D628A, 9	
f, 10	
• • • • •	